Kim Byungsoo, Lee Sangyeol, Kim Dongwon
Department of Statistics, Yeungnam University, Gyeongsan 38541, Korea.
Department of Statistics, Seoul National University, Seoul 08826, Korea.
Entropy (Basel). 2021 Mar 19;23(3):367. doi: 10.3390/e23030367.
In the integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models, parameter estimation is conventionally based on the conditional maximum likelihood estimator (CMLE). However, because the CMLE is sensitive to outliers, we consider a robust estimation method for bivariate Poisson INGARCH models while using the minimum density power divergence estimator. We demonstrate the proposed estimator is consistent and asymptotically normal under certain regularity conditions. Monte Carlo simulations are conducted to evaluate the performance of the estimator in the presence of outliers. Finally, a real data analysis using monthly count series of crimes in New South Wales and an artificial data example are provided as an illustration.
在整数值广义自回归条件异方差(INGARCH)模型中,参数估计传统上基于条件最大似然估计器(CMLE)。然而,由于CMLE对异常值敏感,我们在使用最小密度功率散度估计器时考虑了一种用于双变量泊松INGARCH模型的稳健估计方法。我们证明了在某些正则条件下,所提出的估计器是一致的且渐近正态的。进行蒙特卡罗模拟以评估估计器在存在异常值情况下的性能。最后,提供了一个使用新南威尔士州每月犯罪计数序列的实际数据分析以及一个人工数据示例作为说明。