Suppr超能文献

基于膜的脱盐过程中驱动压力之间数学关系的理论分析

Theoretical Analysis of a Mathematical Relation between Driving Pressures in Membrane-Based Desalting Processes.

作者信息

Chae Sung Ho, Kim Joon Ha

机构信息

School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.

International Environmental Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.

出版信息

Membranes (Basel). 2021 Mar 19;11(3):220. doi: 10.3390/membranes11030220.

Abstract

Osmotic and hydraulic pressures are both indispensable for operating membrane-based desalting processes, such as forward osmosis (FO), pressure-retarded osmosis (PRO), and reverse osmosis (RO). However, a clear relation between these driving pressures has not thus far been identified; hence, the effect of change in driving pressures on systems has not yet been sufficiently analyzed. In this context, this study formulates an actual mathematical relation between the driving pressures of membrane-based desalting processes by taking into consideration the presence of energy loss in each driving pressure. To do so, this study defines the pseudo-driving pressures representing the water transport direction of a system and the similarity coefficients that quantify the energy conservation rule. Consequently, this study finds three other theoretical constraints that are required to operate membrane-based desalting processes. Furthermore, along with the features of the similarity coefficients, this study diagnoses the commercial advantage of RO over FO/PRO and suggests desirable optimization sequences applicable to each process. Since this study provides researchers with guidelines regarding optimization sequences between membrane parameters and operational parameters for membrane-based desalting processes, it is expected that detailed optimization strategies for the processes could be established.

摘要

渗透压和液压对于诸如正向渗透(FO)、压力延迟渗透(PRO)和反渗透(RO)等基于膜的脱盐过程的运行都是不可或缺的。然而,到目前为止,尚未确定这些驱动压力之间的明确关系;因此,驱动压力变化对系统的影响尚未得到充分分析。在此背景下,本研究通过考虑每个驱动压力中能量损失的存在,建立了基于膜的脱盐过程驱动压力之间的实际数学关系。为此,本研究定义了表示系统水传输方向的伪驱动压力和量化能量守恒规则的相似系数。因此,本研究发现了基于膜的脱盐过程运行所需的另外三个理论约束条件。此外,结合相似系数的特点,本研究分析了反渗透相对于正向渗透/压力延迟渗透的商业优势,并提出了适用于每个过程的理想优化顺序。由于本研究为研究人员提供了基于膜的脱盐过程中膜参数和操作参数之间优化顺序的指导方针,预计可以建立该过程的详细优化策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa5/8003649/99889a4e7a7a/membranes-11-00220-g001.jpg

相似文献

2
Forward Osmosis Membranes under Null-Pressure Condition: Do Hydraulic and Osmotic Pressures Have Identical Nature?
Environ Sci Technol. 2018 Mar 20;52(6):3556-3566. doi: 10.1021/acs.est.7b05265. Epub 2018 Mar 1.
3
Pressure retarded osmosis for energy production: membrane materials and operating conditions.
Water Sci Technol. 2012;65(10):1789-94. doi: 10.2166/wst.2012.025.
4
Adverse impact of feed channel spacers on the performance of pressure retarded osmosis.
Environ Sci Technol. 2012 Apr 17;46(8):4673-81. doi: 10.1021/es3002597. Epub 2012 Mar 28.
5
What governs the nature of fouling in forward osmosis (FO) and reverse osmosis (RO)? A molecular dynamics study.
Phys Chem Chem Phys. 2019 Nov 7;21(43):24165-24176. doi: 10.1039/c9cp04393d.
6
Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation.
Chemosphere. 2018 Mar;194:76-84. doi: 10.1016/j.chemosphere.2017.11.067. Epub 2017 Nov 15.
7
Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.
Environ Sci Technol. 2018 Feb 20;52(4):2242-2250. doi: 10.1021/acs.est.7b05774. Epub 2018 Feb 7.
8
Fouling propensity of novel TFC membranes with different osmotic and hydraulic pressure driving forces.
Water Res. 2020 May 15;175:115657. doi: 10.1016/j.watres.2020.115657. Epub 2020 Feb 28.
9
The use of ultrasound to reduce internal concentration polarization in forward osmosis.
Ultrason Sonochem. 2018 Mar;41:475-483. doi: 10.1016/j.ultsonch.2017.10.005. Epub 2017 Oct 5.
10
Application of forward osmosis technology in crude glycerol fermentation biorefinery-potential and challenges.
Bioprocess Biosyst Eng. 2018 Aug;41(8):1089-1101. doi: 10.1007/s00449-018-1938-8. Epub 2018 Apr 24.

引用本文的文献

1
Numerical Modeling in Membrane Processes.
Membranes (Basel). 2022 Oct 23;12(11):1030. doi: 10.3390/membranes12111030.

本文引用的文献

1
On the understanding and feasibility of "Breakthrough" Osmosis.
Sci Rep. 2019 Nov 11;9(1):16464. doi: 10.1038/s41598-019-53417-6.
2
Evidence, Determination, and Implications of Membrane-Independent Limiting Flux in Forward Osmosis Systems.
Environ Sci Technol. 2019 Apr 16;53(8):4380-4388. doi: 10.1021/acs.est.8b05925. Epub 2019 Apr 1.
3
Forward Osmosis Membranes under Null-Pressure Condition: Do Hydraulic and Osmotic Pressures Have Identical Nature?
Environ Sci Technol. 2018 Mar 20;52(6):3556-3566. doi: 10.1021/acs.est.7b05265. Epub 2018 Mar 1.
4
Osmosis is not driven by water dilution.
Trends Plant Sci. 2013 Apr;18(4):195-7. doi: 10.1016/j.tplants.2012.12.001. Epub 2013 Jan 5.
5
Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.
Environ Sci Technol. 2011 May 15;45(10):4360-9. doi: 10.1021/es104325z. Epub 2011 Apr 14.
6
Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.
Biochim Biophys Acta. 1958 Feb;27(2):229-46. doi: 10.1016/0006-3002(58)90330-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验