Suppr超能文献

应用快速非局部均值算法对明场显微镜图像的可分离颜色通道进行降噪处理。

Application of Fast Non-Local Means Algorithm for Noise Reduction Using Separable Color Channels in Light Microscopy Images.

机构信息

Department of Radiological Science, College of Health Science, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.

Department of Dental Hygiene, College of Health Science, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.

出版信息

Int J Environ Res Public Health. 2021 Mar 12;18(6):2903. doi: 10.3390/ijerph18062903.

Abstract

The purpose of this study is to evaluate the various control parameters of a modeled fast non-local means (FNLM) noise reduction algorithm which can separate color channels in light microscopy (LM) images. To achieve this objective, the tendency of image characteristics with changes in parameters, such as smoothing factors and kernel and search window sizes for the FNLM algorithm, was analyzed. To quantitatively assess image characteristics, the coefficient of variation (COV), blind/referenceless image spatial quality evaluator (BRISQUE), and natural image quality evaluator (NIQE) were employed. When high smoothing factors and large search window sizes were applied, excellent COV and unsatisfactory BRISQUE and NIQE results were obtained. In addition, all three evaluation parameters improved as the kernel size increased. However, the kernel and search window sizes of the FNLM algorithm were shown to be dependent on the image processing time (time resolution). In conclusion, this work has demonstrated that the FNLM algorithm can effectively reduce noise in LM images, and parameter optimization is important to achieve the algorithm's appropriate application.

摘要

本研究旨在评估一种经模型化的快速非局部均值(FNLM)降噪算法的各种控制参数,该算法可分离光学显微镜(LM)图像的颜色通道。为实现这一目标,分析了图像特征随 FNLM 算法参数(如平滑因子、核以及搜索窗口大小)变化的趋势。为了定量评估图像特征,采用了变异系数(COV)、无参考/盲目图像空间质量评估器(BRISQUE)和自然图像质量评估器(NIQE)。当应用高平滑因子和大搜索窗口大小时,得到了优异的 COV 和较差的 BRISQUE 和 NIQE 结果。此外,随着核尺寸的增加,所有三个评估参数均得到了改善。然而,FNLM 算法的核和搜索窗口大小取决于图像处理时间(时间分辨率)。总之,本研究表明 FNLM 算法可有效降低 LM 图像中的噪声,而参数优化对于实现算法的适当应用非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9835/8001297/e483fe98f1c6/ijerph-18-02903-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验