Suppr超能文献

通过控制钻孔区域温度低于玻璃化转变温度加工的碳纤维增强塑料的抗变形性能

Deformation Resistance Performance of Carbon Fiber-Reinforced Plastic Machined by Controlling Drilling Area Temperature below the Glass Transition Temperature.

作者信息

Zhang Chenping, Zhang Xiaohui, Duan Yugang, Xia Yu, Ming Yueke, Zhu Yansong

机构信息

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Research Institute of Aerospace Special Materials and Processing Technology, Beijing 100074, China.

出版信息

Materials (Basel). 2021 Mar 12;14(6):1394. doi: 10.3390/ma14061394.

Abstract

Drilling of carbon fiber-reinforced plastics (CFRPs) is a challenging task in aviation and aerospace field. Damages, which can reduce the strength of the structure, often occur during secondary machining operations due to the applied cutting force and generated heat. The main objective of this study was to investigate the drilling performance and the deformation resistance of CFRPs subjected to cryogenic treatment based on glass transition temperature (Tg). Therefore, a cryogenic machining approach was adopted by fixing the workpiece inside a cryogenic box to drill CFRPs. The machining performance was briefly evaluated. Moreover, a through-hole drilling method was promoted to analyze the mechanism of different deformation mechanical properties. The results showed that the cryogenic machining approach improved the machining performance of CFRPs. Nevertheless, the residual intensity of cryo-treated specimen decreased (about 7.14%) due to the Tg-based viscoelasticity. These results demonstrate the great potential of this approach in advanced industrial applications and further pave the way for efficient secondary machining operation of CFRP components.

摘要

在航空航天领域,碳纤维增强塑料(CFRP)的钻孔是一项具有挑战性的任务。在二次加工操作过程中,由于施加的切削力和产生的热量,常常会出现降低结构强度的损伤。本研究的主要目的是基于玻璃化转变温度(Tg)研究低温处理对CFRP钻孔性能和抗变形能力的影响。因此,采用了一种低温加工方法,即将工件固定在低温箱内对CFRP进行钻孔。简要评估了加工性能。此外,还采用了通孔钻孔方法来分析不同变形力学性能的机理。结果表明,低温加工方法提高了CFRP的加工性能。然而,由于基于Tg的粘弹性,低温处理试样的残余强度有所下降(约7.14%)。这些结果证明了该方法在先进工业应用中的巨大潜力,并进一步为CFRP部件的高效二次加工操作铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/8000319/29d4d2d4a0b7/materials-14-01394-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验