Mitus Antoni C, Saphiannikova Marina, Radosz Wojciech, Toshchevikov Vladimir, Pawlik Grzegorz
Department of Theoretical Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany.
Materials (Basel). 2021 Mar 16;14(6):1454. doi: 10.3390/ma14061454.
We review the results of Monte Carlo studies of chosen nonlinear optical effects in host-guest systems, using methods based on the bond-fluctuation model (BFM) for a polymer matrix. In particular, we simulate the inscription of various types of diffraction gratings in degenerate two wave mixing (DTWM) experiments (surface relief gratings (SRG), gratings in polymers doped with azo-dye molecules and gratings in biopolymers), poling effects (electric field poling of dipolar molecules and all-optical poling) and photomechanical effect. All these processes are characterized in terms of parameters measured in experiments, such as diffraction efficiency, nonlinear susceptibilities, density profiles or loading parameters. Local free volume in the BFM matrix, characterized by probabilistic distributions and correlation functions, displays a complex structure of scale-free clusters, which are thought to be responsible for heterogeneous dynamics of nonlinear optical processes. The photoinduced dynamics of single azopolymer chains, studied in two and three dimensions, displays complex sub-diffusive, diffusive and super-diffusive dynamical regimes. A directly related mathematical model of SRG inscription, based on the continuous time random walk (CTRW) formalism, is formulated and studied. Theoretical part of the review is devoted to the justification of the a priori assumptions made in the BFM modeling of photoinduced motion of the azo-polymer chains.
我们回顾了使用基于聚合物基体键涨落模型(BFM)的方法对主客体系统中选定非线性光学效应进行的蒙特卡罗研究结果。特别地,我们模拟了简并二波混频(DTWM)实验中各种类型衍射光栅的写入(表面起伏光栅(SRG)、掺杂偶氮染料分子的聚合物中的光栅以及生物聚合物中的光栅)、极化效应(偶极分子的电场极化和全光极化)以及光机械效应。所有这些过程都根据实验中测量的参数进行表征,如衍射效率、非线性极化率、密度分布或负载参数。BFM基体中的局部自由体积,以概率分布和相关函数为特征,呈现出无标度簇的复杂结构,人们认为这是非线性光学过程非均匀动力学的原因。在二维和三维中研究的单个偶氮聚合物链的光诱导动力学,呈现出复杂的亚扩散、扩散和超扩散动力学状态。基于连续时间随机游走(CTRW)形式理论,建立并研究了一个与SRG写入直接相关的数学模型。综述的理论部分致力于对在偶氮聚合物链光诱导运动的BFM建模中所做的先验假设进行论证。