Suppr超能文献

在非均相催化剂CuCoO/SBA-15上增强过氧单硫酸盐活化以高效降解磺胺吡啶抗生素。

Enhanced peroxymonosulfate activation over heterogeneous catalyst CuCoO/SBA-15 for efficient degradation of sulfapyridine antibiotic.

作者信息

He Jiahong, Xie Taiping, Luo Tianhong, Xu Qiang, Ye Feng, An Jibin, Yang Jun, Wang Jiankang

机构信息

Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China.

School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.

出版信息

Ecotoxicol Environ Saf. 2021 Apr 2;216:112189. doi: 10.1016/j.ecoenv.2021.112189.

Abstract

The largest source of resistant bacteria or viruses is the overuse and misuse of antibiotics in humans and animals. These resistant bacteria or viruses may evolve into superbacteria or superviruses, which causes global plague. Therefore, it is significant to find a highly efficiency and low-cost method to eliminate antibiotics in water environment from inappropriate discharge. Here, a highly active and highly stable heterogeneous catalyst, CuCoO/SBA-15 (CCS) was prepared for peroxymonosulfate (PMS) activation in aim of decomposing persistent sulfapyridine (SPD). The reaction mechanism was thoroughly investigated via in situ quenching test and in situ electron paramagnetic resonance. Four reactive species, SO·, O·, O and ·OH were generated in CuCoO/SBA-15/PMS (CCSP) system. The SO· and O· were dominant active species responsible for SPD degradation. Co(Ⅱ)↔Co(Ⅲ)↔Co(Ⅱ) redox reaction cycle was constructed due to the different redox potential of Co(Ⅱ)/Co(Ⅲ), HSO/SO∙, and HSO/SO∙. Interestingly, Cu(Ⅰ) could urge the redox reaction cycle for PMS activation to be more thermodynamically feasible. Therefore, CCS possessed a highly catalytic activity and excellent stability. Meanwhile, the anions interference test indicated Cl, NO, HCO, and HPO had almost no inhibitory effect on SPD degradation over this catalytic system. We sincerely expected that this catalyst system would be applied extensively into antibiotics degradation in real water bodies.

摘要

耐药细菌或病毒的最大来源是人类和动物对抗生素的过度使用和滥用。这些耐药细菌或病毒可能演变成超级细菌或超级病毒,从而引发全球瘟疫。因此,找到一种高效且低成本的方法来消除水环境中因不当排放而产生的抗生素具有重要意义。在此,制备了一种高活性和高稳定性的非均相催化剂CuCoO/SBA-15(CCS),用于活化过一硫酸盐(PMS)以分解持久性磺胺吡啶(SPD)。通过原位猝灭试验和原位电子顺磁共振对反应机理进行了深入研究。在CuCoO/SBA-15/PMS(CCSP)体系中产生了四种活性物种,即SO·、O·、O和·OH。SO·和O·是负责SPD降解的主要活性物种。由于Co(Ⅱ)/Co(Ⅲ)、HSO/SO∙和HSO/SO∙的氧化还原电位不同,构建了Co(Ⅱ)↔Co(Ⅲ)↔Co(Ⅱ)氧化还原反应循环。有趣的是,Cu(Ⅰ)可促使PMS活化的氧化还原反应循环在热力学上更可行。因此,CCS具有高催化活性和优异的稳定性。同时,阴离子干扰试验表明,Cl、NO、HCO和HPO对该催化体系中SPD的降解几乎没有抑制作用。我们真诚地期望该催化剂体系能广泛应用于实际水体中抗生素的降解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验