Suppr超能文献

Siland是一个用于估计景观空间影响的R软件包。

Siland a R package for estimating the spatial influence of landscape.

作者信息

Carpentier Florence, Martin Olivier

机构信息

Université Paris-Saclay, INRAE, UR MaIAGE, 78350, Jouy-en-Josas, France.

AgroParisTech, 75005, Paris, France.

出版信息

Sci Rep. 2021 Apr 5;11(1):7488. doi: 10.1038/s41598-021-86900-0.

Abstract

The spatial distributions of populations are both influenced by local variables and by characteristics of surrounding landscapes. Understanding how landscape features spatially structure the frequency of a trait in a population, the abundance of a species or the species' richness remains difficult specially because the spatial scale effects of the landscape variables are unknown. Various methods have been proposed but their results are not easily comparable. Here, we introduce "siland", a general method for analyzing the effect of landscape features. Based on a sequential procedure of maximum likelihood estimation, it simultaneously estimates the spatial scales and intensities of landscape variable effects. It does not require any information about the scale of effect. It integrates two landscape effects models: one is based on focal sample site (Bsiland, b for buffer) and one is distance weighted using Spatial Influence Function (Fsiland, f for function). We implemented "siland" in the adaptable and user-friendly R eponym package. It performs landscape analysis on georeferenced point observations (described in a Geographic Information System shapefile format) and allows for effects tests, effects maps and models comparison. We illustrated its use on a real dataset by the study of a crop pest (codling moth densities).

摘要

种群的空间分布既受局部变量影响,也受周围景观特征影响。理解景观特征如何在空间上构建种群中性状的频率、物种的丰度或物种丰富度仍然很困难,特别是因为景观变量的空间尺度效应尚不清楚。已经提出了各种方法,但它们的结果不易比较。在这里,我们介绍“siland”,一种用于分析景观特征效应的通用方法。基于最大似然估计的顺序过程,它同时估计景观变量效应的空间尺度和强度。它不需要任何关于效应尺度的信息。它整合了两种景观效应模型:一种基于焦点样本点(Bsiland,b代表缓冲区),另一种使用空间影响函数进行距离加权(Fsiland,f代表函数)。我们在适应性强且用户友好的R同名包中实现了“siland”。它对地理参考点观测数据(以地理信息系统形状文件格式描述)进行景观分析,并允许进行效应测试、效应图绘制和模型比较。我们通过对一种作物害虫(苹果蠹蛾密度)的研究,在一个实际数据集上展示了它的用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92a5/8021544/71d42dfad26a/41598_2021_86900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验