Suppr超能文献

提高眼动追踪数据精度的方法:控制灰尘对瞳孔检测的影响。

Ways of improving the precision of eye tracking data: Controlling the influence of dirt and dust on pupil detection.

作者信息

Fuhl Wolfgang, Kübler Thomas C, Hospach Dennis, Bringmann Oliver, Rosenstiel Wolfgang, Kasneci Enkelejda

机构信息

University of Tübingen, Germany.

出版信息

J Eye Mov Res. 2017 May 25;10(3). doi: 10.16910/jemr.10.3.1.

Abstract

Eye-tracking technology has to date been primarily employed in research. With recent advances in affordable video-based devices, the implementation of gaze-aware smartphones, and marketable driver monitoring systems, a considerable step towards pervasive eye-tracking has been made. However, several new challenges arise with the usage of eye-tracking in the wild and will need to be tackled to increase the acceptance of this technology. The main challenge is still related to the usage of eye-tracking together with eyeglasses, which in combination with reflections for changing illumination conditions will make a subject "untrackable". If we really want to bring the technology to the consumer, we cannot simply exclude 30% of the population as potential users only because they wear eyeglasses, nor can we make them clean their glasses and the device regularly. Instead, the pupil detection algorithms need to be made robust to potential sources of noise. We hypothesize that the amount of dust and dirt on the eyeglasses and the eye-tracker camera has a significant influence on the performance of currently available pupil detection algorithms. Therefore, in this work, we present a systematic study of the effect of dust and dirt on the pupil detection by simulating various quantities of dirt and dust on eyeglasses. Our results show 1) an overall high robustness to dust in an offfocus layer. 2) the vulnerability of edge-based methods to even small in-focus dust particles. 3) a trade-off between tolerated particle size and particle amount, where a small number of rather large particles showed only a minor performance impact.

摘要

迄今为止,眼动追踪技术主要应用于研究领域。随着价格亲民的基于视频的设备、具备注视感知功能的智能手机以及可上市销售的驾驶员监测系统等方面的最新进展,我们已朝着普及眼动追踪迈出了重要一步。然而,在实际场景中使用眼动追踪技术会出现一些新挑战,要提高这项技术的接受度,就需要应对这些挑战。主要挑战仍然与佩戴眼镜时使用眼动追踪技术有关,眼镜加上光照条件变化产生的反射会使被试者“无法被追踪”。如果我们真的想将这项技术推向消费者,我们不能仅仅因为30%的人口佩戴眼镜就将他们排除在潜在用户之外,也不能要求他们定期清洁眼镜和设备。相反,瞳孔检测算法需要对潜在的噪声源具有鲁棒性。我们假设眼镜和眼动追踪相机上的灰尘和污垢量对当前可用的瞳孔检测算法的性能有重大影响。因此,在这项工作中,我们通过模拟眼镜上不同数量的灰尘和污垢,对灰尘和污垢对瞳孔检测的影响进行了系统研究。我们的结果表明:1)在离焦层中对灰尘总体具有较高的鲁棒性。2)基于边缘的方法对即使是很小的聚焦灰尘颗粒也很脆弱。3)在可容忍的颗粒大小和颗粒数量之间存在权衡,少量较大颗粒仅对性能有轻微影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12d7/7141060/ef9e5463bb23/jemr-10-03-a-figure-01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验