Mo Youbin, Fizari Mounir, Koharchik Kristina, Smith Douglas E
Department of Physics, University of California San Diego, La Jolla, CA, United States.
Front Mol Biosci. 2021 Mar 22;8:605102. doi: 10.3389/fmolb.2021.605102. eCollection 2021.
We previously introduced the use of DNA molecules for calibration of biophysical force and displacement measurements with optical tweezers. Force and length scale factors can be determined from measurements of DNA stretching. Trap compliance can be determined by fitting the data to a nonlinear DNA elasticity model, however, noise/drift/offsets in the measurement can affect the reliability of this determination. Here we demonstrate a more robust method that uses a linear approximation for DNA elasticity applied to high force range (25-45 pN) data. We show that this method can be used to assess how small variations in microsphere sizes affect DNA length measurements and demonstrate methods for correcting for these errors. We further show that these measurements can be used to check assumed linearities of system responses. Finally, we demonstrate methods combining microsphere imaging and DNA stretching to check the compliance and positioning of individual traps.
我们之前介绍了使用DNA分子通过光镊校准生物物理力和位移测量。力和长度比例因子可通过DNA拉伸测量来确定。陷阱柔度可通过将数据拟合到非线性DNA弹性模型来确定,然而,测量中的噪声/漂移/偏移会影响该确定的可靠性。在此,我们展示一种更稳健的方法,该方法对应用于高力范围(25 - 45皮牛)数据的DNA弹性采用线性近似。我们表明该方法可用于评估微球尺寸的微小变化如何影响DNA长度测量,并展示校正这些误差的方法。我们进一步表明这些测量可用于检查系统响应的假定线性度。最后,我们展示结合微球成像和DNA拉伸来检查单个陷阱的柔度和定位的方法。