Suppr超能文献

揭示 GDP 结合失活 Ras 蛋白的“隐形”可成药性构象。

Unveiling the "invisible" druggable conformations of GDP-bound inactive Ras.

机构信息

Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.

Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China;

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2024725118.

Abstract

The prevalent view on whether Ras is druggable has gradually changed in the recent decade with the discovery of effective inhibitors binding to cryptic sites unseen in the native structures. Despite the promising advances, therapeutics development toward higher potency and specificity is challenged by the elusive nature of these binding pockets. Here we derive a conformational ensemble of guanosine diphosphate (GDP)-bound inactive Ras by integrating spin relaxation-validated atomistic simulation with NMR chemical shifts and residual dipolar couplings, which provides a quantitative delineation of the intrinsic dynamics up to the microsecond timescale. The experimentally informed ensemble unequivocally demonstrates the preformation of both surface-exposed and buried cryptic sites in Ras•GDP, advocating design of inhibition by targeting the transient druggable conformers that are invisible to conventional experimental methods. The viability of the ensemble-based rational design has been established by retrospective testing of the ability of the Ras•GDP ensemble to identify known ligands from decoys in virtual screening.

摘要

在最近十年中,随着发现能够结合到天然结构中未观察到的隐蔽结合位点的有效抑制剂,人们对 Ras 是否可成药的主流观点逐渐发生了变化。尽管取得了有希望的进展,但由于这些结合口袋的难以捉摸的性质,针对更高效力和特异性的治疗药物开发仍面临挑战。在这里,我们通过将经过自旋弛豫验证的原子模拟与 NMR 化学位移和残余偶极耦合相结合,推导出 GDP 结合的非活性 Ras 的构象集合,从而在微秒时间尺度上对固有动力学进行了定量描述。经过实验验证的集合明确证明了 Ras•GDP 中表面暴露和埋藏的隐蔽结合位点的预先形成,这为通过靶向传统实验方法无法检测到的瞬时成药构象来设计抑制剂提供了依据。通过对 Ras•GDP 集合识别虚拟筛选中诱饵中已知配体的能力进行回溯性测试,已经证明了基于集合的合理设计的可行性。

相似文献

1
Unveiling the "invisible" druggable conformations of GDP-bound inactive Ras.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2024725118.
2
Microsecond Timescale Dynamics of GDP-Bound Ras Underlies the Formation of Novel Inhibitor-Binding Pockets.
Angew Chem Int Ed Engl. 2016 Dec 12;55(50):15629-15632. doi: 10.1002/anie.201608653. Epub 2016 Nov 17.
3
NMR-Derived Conformational Ensemble of State 1 of Activated Ras Reveals Insights into a Druggable Pocket.
J Phys Chem Lett. 2020 May 7;11(9):3642-3646. doi: 10.1021/acs.jpclett.0c00858. Epub 2020 Apr 24.
4
Current status of the development of Ras inhibitors.
J Biochem. 2015 Aug;158(2):91-9. doi: 10.1093/jb/mvv060. Epub 2015 Jun 22.
10
Differential dynamics of RAS isoforms in GDP- and GTP-bound states.
Proteins. 2015 Jun;83(6):1091-106. doi: 10.1002/prot.24805. Epub 2015 Apr 22.

引用本文的文献

1
Methods for Controlling Small GTPase Activity.
Chembiochem. 2025 Jul 11;26(13):e202500156. doi: 10.1002/cbic.202500156. Epub 2025 Jun 13.
2
Excited-state observation of active K-Ras reveals differential structural dynamics of wild-type versus oncogenic G12D and G12C mutants.
Nat Struct Mol Biol. 2023 Oct;30(10):1446-1455. doi: 10.1038/s41594-023-01070-z. Epub 2023 Aug 28.
3
Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS.
Signal Transduct Target Ther. 2023 May 23;8(1):212. doi: 10.1038/s41392-023-01441-4.
7
Identification of functional substates of KRas during GTP hydrolysis with enhanced sampling simulations.
Phys Chem Chem Phys. 2022 Mar 30;24(13):7653-7665. doi: 10.1039/d2cp00274d.
8
Opening of a cryptic pocket in β-lactamase increases penicillinase activity.
Proc Natl Acad Sci U S A. 2021 Nov 23;118(47). doi: 10.1073/pnas.2106473118.

本文引用的文献

1
NMR-Derived Conformational Ensemble of State 1 of Activated Ras Reveals Insights into a Druggable Pocket.
J Phys Chem Lett. 2020 May 7;11(9):3642-3646. doi: 10.1021/acs.jpclett.0c00858. Epub 2020 Apr 24.
2
Progress in targeting RAS with small molecule drugs.
Biochem J. 2019 Jan 31;476(2):365-374. doi: 10.1042/BCJ20170441.
3
Extending the Lifetime of Native GTP-Bound Ras for Site-Resolved NMR Measurements: Quantifying the Allosteric Dynamics.
Angew Chem Int Ed Engl. 2019 Feb 25;58(9):2730-2733. doi: 10.1002/anie.201812902. Epub 2019 Jan 25.
4
The reactivity-driven biochemical mechanism of covalent KRAS inhibitors.
Nat Struct Mol Biol. 2018 Jun;25(6):454-462. doi: 10.1038/s41594-018-0061-5. Epub 2018 May 14.
5
Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor.
Cell. 2018 Jan 25;172(3):578-589.e17. doi: 10.1016/j.cell.2018.01.006.
6
Novel K-Ras G12C Switch-II Covalent Binders Destabilize Ras and Accelerate Nucleotide Exchange.
J Chem Inf Model. 2018 Feb 26;58(2):464-471. doi: 10.1021/acs.jcim.7b00399. Epub 2018 Jan 31.
7
Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras.
Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):970-984. doi: 10.1107/S2059798317015418. Epub 2017 Nov 10.
8
Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C.
Cell Chem Biol. 2017 Aug 17;24(8):1005-1016.e3. doi: 10.1016/j.chembiol.2017.06.017. Epub 2017 Aug 3.
9
Microsecond Timescale Dynamics of GDP-Bound Ras Underlies the Formation of Novel Inhibitor-Binding Pockets.
Angew Chem Int Ed Engl. 2016 Dec 12;55(50):15629-15632. doi: 10.1002/anie.201608653. Epub 2016 Nov 17.
10
Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design.
Nat Rev Drug Discov. 2016 Nov;15(11):771-785. doi: 10.1038/nrd.2016.139. Epub 2016 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验