Suppr超能文献

在新冠病毒肺炎(COVID-19)检测中,定量胸膜线特征分析优于传统的肺纹理超声特征。

Quantitative pleural line characterization outperforms traditional lung texture ultrasound features in detection of COVID-19.

作者信息

Sultan Laith R, Chen Yale Tung, Cary Theodore W, Ashi Khalid, Sehgal Chandra M

机构信息

Department of Radiology University of Pennsylvania Philadelphia Pennsylvania USA.

Department of Emergency Medicine Hospital Universitario La Paz Madrid Spain.

出版信息

J Am Coll Emerg Physicians Open. 2021 Apr 2;2(2):e12418. doi: 10.1002/emp2.12418. eCollection 2021 Apr.

Abstract

BACKGROUND AND OBJECTIVE

Lung ultrasound is an inherently user-dependent modality that could benefit from quantitative image analysis. In this pilot study we evaluate the use of computer-based pleural line (p-line) ultrasound features in comparison to traditional lung texture (TLT) features to test the hypothesis that p-line thickening and irregularity are highly suggestive of coronavirus disease 2019 (COVID-19) and can be used to improve the disease diagnosis on lung ultrasound.

METHODS

Twenty lung ultrasound images, including normal and COVID-19 cases, were used for quantitative analysis. P-lines were detected by a semiautomated segmentation method. Seven quantitative features describing thickness, margin morphology, and echo intensity were extracted. TLT lines were outlined, and texture features based on run-length and gray-level co-occurrence matrix were extracted. The diagnostic performance of the 2 feature sets was measured and compared using receiver operating characteristics curve analysis. Observer agreements were evaluated by measuring interclass correlation coefficients (ICC) for each feature.

RESULTS

Six of 7 p-line features showed a significant difference between normal and COVID-19 cases. Thickness of p-lines was larger in COVID-19 cases (6.27 ± 1.45 mm) compared to normal (1.00 ± 0.19 mm),  < 0.001. Among features describing p-line margin morphology, projected intensity deviation showed the largest difference between COVID-19 cases (4.08 ± 0.32) and normal (0.43 ± 0.06),  < 0.001. From the TLT line features, only 2 features, gray-level non-uniformity and run-length non-uniformity, showed a significant difference between normal cases (0.32 ± 0.06, 0.59 ± 0.06) and COVID-19 (0.22 ± 0.02, 0.39 ± 0.05),  = 0.04, respectively. All features together for p-line showed perfect sensitivity and specificity of 100; whereas, TLT features had a sensitivity of 90 and specificity of 70. Observer agreement for p-lines (ICC = 0.65-0.85) was higher than for TLT features (ICC = 0.42-0.72).

CONCLUSION

P-line features characterize COVID-19 changes with high accuracy and outperform TLT features. Quantitative p-line features are promising diagnostic tools in the interpretation of lung ultrasound images in the context of COVID-19.

摘要

背景与目的

肺部超声本质上是一种依赖操作者的检查方式,定量图像分析可能会有所助益。在这项初步研究中,我们评估基于计算机的胸膜线(p线)超声特征与传统肺纹理(TLT)特征的应用情况,以检验以下假设:p线增厚和不规则高度提示2019冠状病毒病(COVID-19),可用于改善肺部超声对该病的诊断。

方法

使用20幅肺部超声图像(包括正常和COVID-19病例)进行定量分析。通过半自动分割方法检测p线。提取描述厚度、边缘形态和回声强度的7个定量特征。勾勒出TLT线,并提取基于游程长度和灰度共生矩阵 的纹理特征。使用受试者工作特征曲线分析测量并比较这两组特征的诊断性能。通过测量每个特征的组内相关系数(ICC)评估观察者间的一致性。

结果

7个p线特征中的6个在正常和COVID-19病例之间显示出显著差异。COVID-19病例的p线厚度(6.27±1.45毫米)大于正常病例(1.00±0.19毫米),<0.001。在描述p线边缘形态的特征中,投影强度偏差在COVID-19病例(4.08±0.32)和正常病例(0.43±0.06)之间差异最大,<0.001。从TLT线特征来看,只有灰度不均匀性和游程长度不均匀性这2个特征在正常病例(0.32±0.06,0.59±0.06)和COVID-19病例(0.22±0.02,0.39±0.05)之间分别显示出显著差异,=0.04。p线的所有特征综合起来显示出100%的完美敏感性和特异性;而TLT特征的敏感性为90%,特异性为70%。p线的观察者一致性(ICC=0.65- .85)高于TLT特征(ICC=0.42-0.72)。

结论

p线特征能高度准确地表征COVID-19的变化,且优于TLT特征。在COVID-19背景下,定量p线特征是解读肺部超声图像的有前景的诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f5b/8018308/b4fe58480d1e/EMP2-2-e12418-g004.jpg

相似文献

1
Quantitative pleural line characterization outperforms traditional lung texture ultrasound features in detection of COVID-19.
J Am Coll Emerg Physicians Open. 2021 Apr 2;2(2):e12418. doi: 10.1002/emp2.12418. eCollection 2021 Apr.
2
Quantitative Analysis of Pleural Line and B-Lines in Lung Ultrasound Images for Severity Assessment of COVID-19 Pneumonia.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jan;69(1):73-83. doi: 10.1109/TUFFC.2021.3107598. Epub 2021 Dec 31.
3
Combining quantitative and qualitative analysis for scoring pleural line in lung ultrasound.
Phys Med Biol. 2024 Apr 17;69(9). doi: 10.1088/1361-6560/ad3888.
6
Application of BOLDMRIbased radiomics in differentiating malignant from benign renal tumors.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2021;46(9):1010-1017. doi: 10.11817/j.issn.1672-7347.2021.200827.
7
Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI.
Acad Radiol. 2008 Dec;15(12):1513-25. doi: 10.1016/j.acra.2008.06.005.
10
Can texture analysis based on single unenhanced CT accurately predict the WHO/ISUP grading of localized clear cell renal cell carcinoma?
Abdom Radiol (NY). 2021 Sep;46(9):4289-4300. doi: 10.1007/s00261-021-03090-z. Epub 2021 Apr 28.

本文引用的文献

1
The utility of lung ultrasound in COVID-19: A systematic scoping review.
Ultrasound. 2020 Nov;28(4):208-222. doi: 10.1177/1742271X20950779. Epub 2020 Aug 17.
2
Point of care lung ultrasound in COVID-19: hype or hope?
BJR Open. 2020 Oct 6;2(1):20200027. doi: 10.1259/bjro.20200027. eCollection 2020 Oct.
3
Point-of-care Lung Ultrasound Is Useful to Evaluate Emergency Department Patients for COVID-19.
West J Emerg Med. 2020 Sep 28;21(6):24-31. doi: 10.5811/westjem.2020.8.49205.
4
Lung Ultrasound for Patients With Coronavirus Disease 2019 Pulmonary Disease.
Chest. 2021 Jan;159(1):205-211. doi: 10.1016/j.chest.2020.08.2054. Epub 2020 Aug 21.
5
Correlation between Chest Computed Tomography and Lung Ultrasonography in Patients with Coronavirus Disease 2019 (COVID-19).
Ultrasound Med Biol. 2020 Nov;46(11):2918-2926. doi: 10.1016/j.ultrasmedbio.2020.07.003. Epub 2020 Jul 13.
6
Chest Computed Tomography Findings in COVID-19 and Influenza: A Narrative Review.
Biomed Res Int. 2020 Jun 5;2020:6928368. doi: 10.1155/2020/6928368. eCollection 2020.
7
A Review of Early Experience in Lung Ultrasound in the Diagnosis and Management of COVID-19.
Ultrasound Med Biol. 2020 Sep;46(9):2530-2545. doi: 10.1016/j.ultrasmedbio.2020.05.012. Epub 2020 May 25.
8
Mechanism of inflammatory response in associated comorbidities in COVID-19.
Diabetes Metab Syndr. 2020 Jul-Aug;14(4):597-600. doi: 10.1016/j.dsx.2020.05.025. Epub 2020 May 12.
9
Lung ultrasound in the monitoring of COVID-19 infection.
Clin Med (Lond). 2020 Jul;20(4):e62-e65. doi: 10.7861/clinmed.2020-0123. Epub 2020 May 12.
10
The diagnosis of pneumonia in a pregnant woman with coronavirus disease 2019 using maternal lung ultrasound.
Am J Obstet Gynecol. 2020 Jul;223(1):9-11. doi: 10.1016/j.ajog.2020.04.020. Epub 2020 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验