Department of mechanical engineering, National Institute of Technology, Agartala, India.
Department of mechanical engineering, National Institute of Technology Andhra Pradesh, Tadepalligudam, India.
Environ Technol. 2022 Aug;43(20):3131-3148. doi: 10.1080/09593330.2021.1916091. Epub 2021 May 2.
Lower alcohols have long been the figureheads of diesel/biodiesel additives in characterizing renewable fuels. Next-generation alcohol like n-octanol occupied the reified position due to their better fuel properties. In this paper, combustion, performance and, emission of different graphene-oxide nanoparticles (nanoGO) added jatropha biodiesel, n-octanol and petrodiesel blends are investigated in a 4-stroke DI diesel engine. This article also aims to optimize the engine inputs accountable for better performance and emission characteristics of a diesel engine running with nanoGO dispersed biodiesel/diesel/higher alcohol blends. Full Factorial Design-based Response Surface Methodology (RSM) is utilized to model the experiments using Design-Expert software to optimize engine responses. Validation of the developed model is carried out using sophisticated error and performance metrics, namely, TheilU2, Kling-Gupta Efficiency (K-G Eff), and Nash-Sutcliffe coefficient of efficiency (N-S Eff) along with the conventional statistical database. The model optimized engine inputs of 3.898% n-Octanol, and 49.772 ppm nanoGO at 99.2% load with a desirability index of 0.997 as the optimum engine parameters. The experimental validation revealed that the model optimized blend at full load witnessed a reduction of 15.6% CO, 21.78% HC.u, and 3.26% NOx emission compared to petrodiesel. However, a slight increase in brake specific energy consumption (2.95%) is also recorded because of the lower heating value of the blend.
低醇类长期以来一直是柴油/生物柴油添加剂的代表,用于描述可再生燃料。由于其更好的燃料性能,下一代醇类,如正辛醇,占据了具象化的位置。在本文中,研究了不同氧化石墨烯纳米粒子(nanoGO)添加到麻疯树生物柴油、正辛醇和石油柴油混合物中的燃烧、性能和排放情况,在四冲程直喷式柴油机中进行。本文还旨在优化发动机输入,以提高使用分散有纳米 GO 的生物柴油/柴油/高醇混合物运行的柴油机的性能和排放特性。使用基于全因子设计的响应面法(RSM),通过 Design-Expert 软件对实验进行建模,以优化发动机响应。利用复杂的误差和性能指标,即 TheilU2、Kling-Gupta 效率(K-G Eff)和纳什-苏特克里夫效率系数(N-S Eff),以及传统的统计数据库,对开发的模型进行验证。该模型优化了发动机输入参数,在 99.2%负荷下,正辛醇为 3.898%,纳米 GO 为 49.772 ppm,理想指数为 0.997,为最佳发动机参数。实验验证表明,在全负荷下,与石油柴油相比,模型优化的混合物的 CO 排放减少了 15.6%,HC.u 排放减少了 21.78%,NOx 排放减少了 3.26%。然而,由于混合物的低热值,制动比能消耗也略有增加(2.95%)。