Suppr超能文献

采用响应面法研究生物柴油/柴油/高级醇混合燃料中分散氧化石墨烯对柴油机的影响。

Experimental investigation on dispersing graphene-oxide in biodiesel/diesel/ higher alcohol blends on diesel engine using response surface methodology.

机构信息

Department of mechanical engineering, National Institute of Technology, Agartala, India.

Department of mechanical engineering, National Institute of Technology Andhra Pradesh, Tadepalligudam, India.

出版信息

Environ Technol. 2022 Aug;43(20):3131-3148. doi: 10.1080/09593330.2021.1916091. Epub 2021 May 2.

Abstract

Lower alcohols have long been the figureheads of diesel/biodiesel additives in characterizing renewable fuels. Next-generation alcohol like n-octanol occupied the reified position due to their better fuel properties. In this paper, combustion, performance and, emission of different graphene-oxide nanoparticles (nanoGO) added jatropha biodiesel, n-octanol and petrodiesel blends are investigated in a 4-stroke DI diesel engine. This article also aims to optimize the engine inputs accountable for better performance and emission characteristics of a diesel engine running with nanoGO dispersed biodiesel/diesel/higher alcohol blends. Full Factorial Design-based Response Surface Methodology (RSM) is utilized to model the experiments using Design-Expert software to optimize engine responses. Validation of the developed model is carried out using sophisticated error and performance metrics, namely, TheilU2, Kling-Gupta Efficiency (K-G Eff), and Nash-Sutcliffe coefficient of efficiency (N-S Eff) along with the conventional statistical database. The model optimized engine inputs of 3.898% n-Octanol, and 49.772 ppm nanoGO at 99.2% load with a desirability index of 0.997 as the optimum engine parameters. The experimental validation revealed that the model optimized blend at full load witnessed a reduction of 15.6% CO, 21.78% HC.u, and 3.26% NOx emission compared to petrodiesel. However, a slight increase in brake specific energy consumption (2.95%) is also recorded because of the lower heating value of the blend.

摘要

低醇类长期以来一直是柴油/生物柴油添加剂的代表,用于描述可再生燃料。由于其更好的燃料性能,下一代醇类,如正辛醇,占据了具象化的位置。在本文中,研究了不同氧化石墨烯纳米粒子(nanoGO)添加到麻疯树生物柴油、正辛醇和石油柴油混合物中的燃烧、性能和排放情况,在四冲程直喷式柴油机中进行。本文还旨在优化发动机输入,以提高使用分散有纳米 GO 的生物柴油/柴油/高醇混合物运行的柴油机的性能和排放特性。使用基于全因子设计的响应面法(RSM),通过 Design-Expert 软件对实验进行建模,以优化发动机响应。利用复杂的误差和性能指标,即 TheilU2、Kling-Gupta 效率(K-G Eff)和纳什-苏特克里夫效率系数(N-S Eff),以及传统的统计数据库,对开发的模型进行验证。该模型优化了发动机输入参数,在 99.2%负荷下,正辛醇为 3.898%,纳米 GO 为 49.772 ppm,理想指数为 0.997,为最佳发动机参数。实验验证表明,在全负荷下,与石油柴油相比,模型优化的混合物的 CO 排放减少了 15.6%,HC.u 排放减少了 21.78%,NOx 排放减少了 3.26%。然而,由于混合物的低热值,制动比能消耗也略有增加(2.95%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验