HTW Dresden, Dresden, Germany.
Center for Advancing Electronics Dresden, TU Dresden, Germany.
PLoS Comput Biol. 2021 Apr 12;17(4):e1008826. doi: 10.1371/journal.pcbi.1008826. eCollection 2021 Apr.
Sperm of marine invertebrates have to find eggs cells in the ocean. Turbulent flows mix sperm and egg cells up to the millimeter scale; below this, active swimming and chemotaxis become important. Previous work addressed either turbulent mixing or chemotaxis in still water. Here, we present a general theory of sperm chemotaxis inside the smallest eddies of turbulent flow, where signaling molecules released by egg cells are spread into thin concentration filaments. Sperm cells 'surf' along these filaments towards the egg. External flows make filaments longer, but also thinner. These opposing effects set an optimal flow strength. The optimum predicted by our theory matches flow measurements in shallow coastal waters. Our theory quantitatively agrees with two previous fertilization experiments in Taylor-Couette chambers and provides a mechanistic understanding of these early experiments. 'Surfing along concentration filaments' could be a paradigm for navigation in complex environments in the presence of turbulent flow.
海洋无脊椎动物的精子必须在海洋中找到卵细胞。湍流将精子和卵细胞混合到毫米尺度;在这以下,主动游动和化学趋性变得重要。以前的工作要么研究湍流中的混合,要么研究静水的化学趋性。在这里,我们提出了一个关于在由卵细胞释放的信号分子扩散成稀薄浓度丝状的最小涡流中精子化学趋性的一般理论。精子细胞沿着这些丝状结构向卵细胞游动。外部流动使丝状结构变长,但也变薄。这些相反的效应设定了最佳的流动强度。我们的理论预测的最佳值与浅海沿岸水域的流动测量值相匹配。我们的理论与之前在泰勒-库埃特腔中的两个受精实验定量一致,并为这些早期实验提供了一种机械理解。“沿着浓度丝状结构游动”可能是在存在湍流的复杂环境中导航的范例。