Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea.
mBio. 2021 Apr 13;12(2):e03376-20. doi: 10.1128/mBio.03376-20.
Bacterial mRNAs often harbor upstream open reading frames (uORFs) in the 5' untranslated regions (UTRs). Translation of the uORF usually affects downstream gene expression at the levels of transcription and/or translation initiation. Unlike other uORFs mostly located in the 5' UTR, we discovered an 8-amino-acid ORF, designated , in the intergenic region between the virulence gene and the Mg transporter gene in the operon. Translation of promotes downstream Mg transporter expression at the level of translation by releasing the ribosome-binding sequence of the gene that is sequestered in a translation-inhibitory stem-loop structure. Interestingly, Asp2 and Glu5 codons that induce ribosome destabilization are required for -mediated translation. Moreover, the Asp and Glu codons-mediated translation is counteracted by the ribosomal subunit L31 that stabilizes ribosome. Substitution of the Asp2 and Glu5 codons in decreases MgtB Mg transporter production and thus attenuates virulence in mice, likely by limiting Mg acquisition during infection. Translation initiation regions in mRNAs that include the ribosome-binding site (RBS) and the start codon are often sequestered within a secondary structure. Therefore, to initiate protein synthesis, the mRNA secondary structure must be unfolded to allow the RBS to be accessible to the ribosome. Such unfolding can be achieved by various mechanisms that include translation of a small upstream open reading frame (uORF). In the intracellular pathogen serovar Typhimurium, translation of the Mg transporter gene is enhanced by an 8-amino-acid upstream ORF, namely, , that harbors Asp and Glu codons, which are likely to destabilize ribosome during translation. Translation of the ORF promotes the formation of a stem-loop mRNA structure sequestering anti-RBS and thus releases the RBS. Because -mediated MgtB Mg transporter production is required for virulence, this pathogen seems to control the virulence determinant production exquisitely via this uORF during infection.
细菌 mRNA 通常在 5'非翻译区 (UTR) 中含有上游开放阅读框 (uORF)。uORF 的翻译通常会影响下游基因的转录和/或翻译起始水平的表达。与其他主要位于 5'UTR 中的 uORF 不同,我们在 operon 中 毒力基因和 Mg 转运基因之间的基因间区发现了一个 8 个氨基酸的 ORF,命名为 。该 ORF 的翻译通过释放被翻译抑制茎环结构隔离的 基因的核糖体结合序列来促进下游 Mg 转运蛋白的翻译。有趣的是,诱导核糖体不稳定的 Asp2 和 Glu5 密码子对于 介导的翻译是必需的。此外,核糖体亚基 L31 稳定核糖体,可拮抗 Asp 和 Glu 密码子介导的翻译。 中的 Asp2 和 Glu5 密码子的替换会降低 MgtB Mg 转运蛋白的产生,从而减弱小鼠的毒力,这可能是通过限制感染期间的 Mg 获取来实现的。包含核糖体结合位点 (RBS) 和起始密码子的 mRNA 翻译起始区通常被隔离在二级结构内。因此,为了启动蛋白质合成,mRNA 二级结构必须解折叠,以使 RBS 能够与核糖体结合。这种解折叠可以通过多种机制来实现,包括翻译一个小的上游开放阅读框 (uORF)。在胞内病原体 血清型 Typhimurium 中,Mg 转运蛋白 基因的翻译通过一个 8 个氨基酸的上游 ORF 增强,即 ,它含有 Asp 和 Glu 密码子,这些密码子在翻译过程中可能会使核糖体不稳定。该 ORF 的翻译促进了一种茎环 mRNA 结构的形成,该结构隔离了反 RBS,从而释放了 RBS。由于介导的 MgtB Mg 转运蛋白的产生对于毒力是必需的,因此这种病原体似乎通过这种 uORF 在感染过程中极其精细地控制毒力决定因素的产生。