Cui Wen-Gang, Li Yan-Ting, Yu Lei, Zhang Hongbo, Hu Tong-Liang
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
ACS Appl Mater Interfaces. 2021 Apr 28;13(16):18693-18703. doi: 10.1021/acsami.1c00432. Epub 2021 Apr 14.
Selective hydrogenation of CO to methanol is a "two birds, one stone" technology to mitigate the greenhouse effect and solve the energy demand-supply deficit. Cu-based catalysts can effectively catalyze this reaction but suffer from low catalytic stability caused by the sintering of Cu species. Here, we report a series of zeolite-fixed catalysts Cu/ZnO()@Na-ZSM-5 ( is the mass ratios of Cu/Zn in the catalysts) with core-shell structures to overcome this issue and strengthen the transformation. Fascinatingly, in this work, we first employed bimetallic metal-organic framework, CuZn-HKUST-1, nanoparticles (NPs) as a sacrificial agent to introduce ultrasmall Cu/ZnO NPs (∼2 nm) into the crystalline particles of the Na-ZSM-5 zeolite via a hydrothermal synthesis method. The catalytic results showed that the optimized zeolite-encapsulated Cu/ZnO(1.38)@Na-ZSM-5 catalyst exhibited the space time yield of methanol (STY) of 44.88 g·g·h, much more efficient than the supported Cu/ZnO/Na-ZSM-5 catalyst (13.32 g·g·h) and industrial Cu/ZnO/AlO catalyst (8.46 g·g·h) under identical conditions. Multiple studies demonstrated that the confinement in the zeolite formwork affords an intimate surrounding for the active phase to create synergies and avoid the separation of Cu-ZnO interfaces, which results in an improved performance. More importantly, in the long-term test, the Cu/ZnO(1.38)@Na-ZSM-5 catalyst exhibited constant STY with superior durability benefitted from its fixed structure. The current findings demonstrate the importance of confinement effects in designing highly efficient and stable methanol synthesis catalysts.
将一氧化碳选择性加氢制甲醇是一项“一石二鸟”的技术,既能缓解温室效应,又能解决能源供需缺口问题。铜基催化剂能有效催化该反应,但由于铜物种的烧结,其催化稳定性较低。在此,我们报道了一系列具有核壳结构的沸石固定催化剂Cu/ZnO()@Na-ZSM-5(为催化剂中Cu/Zn的质量比),以克服这一问题并强化转化过程。有趣的是,在本工作中,我们首次采用双金属金属有机框架CuZn-HKUST-1纳米颗粒(NPs)作为牺牲剂,通过水热合成法将超小的Cu/ZnO NPs(约2 nm)引入到Na-ZSM-5沸石的晶体颗粒中。催化结果表明,优化后的沸石封装Cu/ZnO(1.38)@Na-ZSM-5催化剂的甲醇时空产率(STY)为44.88 g·g·h,在相同条件下比负载型Cu/ZnO/Na-ZSM-5催化剂(13.32 g·g·h)和工业Cu/ZnO/AlO催化剂(8.46 g·g·h)效率高得多。多项研究表明,沸石骨架中的限域作用为活性相提供了紧密的环境,从而产生协同效应并避免Cu-ZnO界面分离,进而提高了性能。更重要的是,在长期测试中,Cu/ZnO(1.38)@Na-ZSM-5催化剂表现出恒定的STY且具有优异的耐久性,这得益于其固定的结构。当前的研究结果证明了限域效应在设计高效稳定甲醇合成催化剂中的重要性。