Suppr超能文献

通过双拉普拉斯图正则化逻辑矩阵分解进行药物-靶点相互作用预测

Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Logistic Matrix Factorization.

作者信息

Wang Aizhen, Wang Minhui

机构信息

Department of Pharmacy, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223002, China.

Department of Pharmacy, Lianshui People's Hospital Affiliated to Kangda College, Nanjing Medical University, Huai'an 223300, China.

出版信息

Biomed Res Int. 2021 Mar 26;2021:5599263. doi: 10.1155/2021/5599263. eCollection 2021.

Abstract

Drug-target interactions provide useful information for biomedical drug discovery as well as drug development. However, it is costly and time consuming to find drug-target interactions by experimental methods. As a result, developing computational approaches for this task is necessary and has practical significance. In this study, we establish a novel dual Laplacian graph regularized logistic matrix factorization model for drug-target interaction prediction, referred to as DLGrLMF briefly. Specifically, DLGrLMF regards the task of drug-target interaction prediction as a weighted logistic matrix factorization problem, in which the experimentally validated interactions are allocated with larger weights. Meanwhile, by considering that drugs with similar chemical structure should have interactions with similar targets and targets with similar genomic sequence similarity should in turn have interactions with similar drugs, the drug pairwise chemical structure similarities as well as the target pairwise genomic sequence similarities are fully exploited to serve the matrix factorization problem by using a dual Laplacian graph regularization term. In addition, we design a gradient descent algorithm to solve the resultant optimization problem. Finally, the efficacy of DLGrLMF is validated on various benchmark datasets and the experimental results demonstrate that DLGrLMF performs better than other state-of-the-art methods. Case studies are also conducted to validate that DLGrLMF can successfully predict most of the experimental validated drug-target interactions.

摘要

药物-靶点相互作用为生物医学药物发现以及药物开发提供了有用信息。然而,通过实验方法寻找药物-靶点相互作用成本高昂且耗时。因此,开发用于此任务的计算方法是必要的且具有实际意义。在本研究中,我们建立了一种用于药物-靶点相互作用预测的新型双拉普拉斯图正则化逻辑矩阵分解模型,简称为DLGrLMF。具体而言,DLGrLMF将药物-靶点相互作用预测任务视为加权逻辑矩阵分解问题,其中对经过实验验证的相互作用赋予更大权重。同时,考虑到具有相似化学结构的药物应与相似靶点相互作用,以及具有相似基因组序列相似性的靶点应反过来与相似药物相互作用,通过使用双拉普拉斯图正则化项充分利用药物对之间的化学结构相似性以及靶点对之间的基因组序列相似性来服务矩阵分解问题。此外,我们设计了一种梯度下降算法来解决由此产生的优化问题。最后,在各种基准数据集上验证了DLGrLMF的有效性,实验结果表明DLGrLMF的性能优于其他现有方法。还进行了案例研究以验证DLGrLMF能够成功预测大多数经过实验验证的药物-靶点相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75da/8019634/2338c255a8da/BMRI2021-5599263.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验