Suppr超能文献

基于纹理分析的摄影图像角膜营养不良的自动分割。

Automatic segmentation of corneal dystrophy on photographic images based on texture analysis.

机构信息

Department of Ophthalmology, Kyung Hee University Medical Center, Kyung Hee University Hospital, Kyung Hee University, #23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-872, Korea.

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.

出版信息

Int Ophthalmol. 2021 Aug;41(8):2695-2703. doi: 10.1007/s10792-021-01825-x. Epub 2021 Apr 15.

Abstract

PURPOSE

To develop an automatic algorithm to analyze dystrophic lesions on photographic images of corneal dystrophy.

METHODS

The dataset included 32 images of corneal dystrophy. The dystrophic area was manually segmented twice. Manually labeled dystrophy areas were compared with automatically segmented images. First, we manually removed the light reflex from the image of the cornea. Using an automatic approach, we extracted the brown color of the iris. Then, the program detected the circular region of the pupil and the corneal surface. A whitish dystrophy area was defined based on the image intensity on the iris and the pupil. The sliding square kernel was applied to clearly define the dystrophic region.

RESULTS

For the manual analysis and the twice automatic approach, the Dice similarity was 0.804 and 0.801, respectively. The Pearson correlation coefficient was 0.807 and 0.806, respectively. The total number of distinct dystrophic areas showed no significant difference between the manual and automatic approaches according to the Wilcoxon signed-rank test (p < 0.0001, both).

CONCLUSIONS

We proposed an automatic algorithm for detecting the dystrophy areas on photographic images with an accuracy of approximately 0.80. This system can be applied to detect and predict the progression of corneal dystrophy.

摘要

目的

开发一种自动算法来分析角膜营养不良的摄影图像上的营养不良病变。

方法

数据集包括 32 张角膜营养不良图像。两次手动分割营养不良区域。手动标记的营养不良区域与自动分割的图像进行比较。首先,我们手动从角膜图像中去除光反射。使用自动方法,我们提取虹膜的棕色。然后,程序检测瞳孔和角膜表面的圆形区域。基于虹膜和瞳孔上的图像强度定义了发白的营养不良区域。滑动正方形核用于清楚地定义营养不良区域。

结果

对于手动分析和两次自动方法,Dice 相似性分别为 0.804 和 0.801。Pearson 相关系数分别为 0.807 和 0.806。根据 Wilcoxon 符号秩检验,手动和自动方法之间明显的营养不良区域总数没有显著差异(均为 p < 0.0001)。

结论

我们提出了一种用于检测摄影图像上营养不良区域的自动算法,其准确性约为 0.80。该系统可用于检测和预测角膜营养不良的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验