Suppr超能文献

通过探针辅助固态 NMR 方法对面心金属氧化物和多孔沸石催化剂的表面指纹分析。

Surface Fingerprinting of Faceted Metal Oxides and Porous Zeolite Catalysts by Probe-Assisted Solid-State NMR Approaches.

机构信息

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.

University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

出版信息

Acc Chem Res. 2021 May 18;54(10):2421-2433. doi: 10.1021/acs.accounts.1c00069. Epub 2021 Apr 15.

Abstract

Acid catalysis in heterogeneous systems such as metal oxides and porous zeolites has been widely involved in various catalytic processes for chemical and petrochemical industries. In acid-catalyzed reactions, the performance (e.g., activity and selectivity) is closely associated with the acidic features of the catalysts, viz., type (Lewis vs Brønsted acidity), distribution (external vs internal surface), strength (strong vs weak), concentration (amount), and spatial interactions of acidic sites. The characterization of local structure and acidic properties of these active sites has important implications for understanding the reaction mechanism and the practical catalytic applications of acidic catalysts. Among diverse acidity characterization approaches, the solid-state nuclear magnetic resonance (SSNMR) technique with suitable probe molecules has been recognized as a reliable and versatile tool. Such a probe-assisted SSNMR approach could provide qualitative (type, distribution, and spatial interactions) and quantitative (strength and concentration) information on each acidic site. This Account aims to integrate our recent important findings in determining the structures and acidic characteristics of some typical metal oxide and zeolite catalysts by using the probe-assisted SSNMR technique, as well as clarifying the continuously evolving process of each discrete acidic site under hydrothermal or chemical treatments even at the molecular level with multiscale theoretical simulations.More specifically, we will describe herein the development and applications of the probe-assisted SSNMR methods, such as trimethylphosphine (TMP) and acetonitrile- (CDCN) in conjunction with advanced two-dimensional (2D) homo- and heteronuclear correlation spectroscopy, for characterizing the structures and properties of acidic sites in varied solid catalysts. Moreover, relevant information regarding the surface fingerprinting of various facets on crystalline metal oxide nanoparticles and active centers inside porous zeolites, the mapping of relevant spatial interactions, and the verification of structure-activity correlation were investigated as well. Relevant discussions are mainly based on the recent NMR experiments of our collaborating research groups, including (i) determining the acidic characterization with probe-assisted SSNMR approaches, (ii) mapping various active centers (or crystalline facets), and (iii) revealing their influence on catalytic performance of solid acid catalyst systems. It is anticipated that this information may provide more in-depth insights toward our fundamental understanding of solid acid catalysis.

摘要

多相体系中的酸催化,如金属氧化物和多孔沸石,广泛应用于化学和石油化工行业的各种催化过程。在酸催化反应中,性能(例如活性和选择性)与催化剂的酸性特征密切相关,即类型(Lewis 酸与 Brønsted 酸)、分布(外表面与内表面)、强度(强与弱)、浓度(量)和酸性位的空间相互作用。这些活性位的局部结构和酸性性质的表征对于理解反应机理和酸性催化剂的实际催化应用具有重要意义。在各种酸性表征方法中,具有合适探针分子的固态核磁共振(SSNMR)技术已被认为是一种可靠且多功能的工具。这种探针辅助 SSNMR 方法可以提供每个酸性位的定性(类型、分布和空间相互作用)和定量(强度和浓度)信息。本综述旨在综合我们最近使用探针辅助 SSNMR 技术确定一些典型金属氧化物和沸石催化剂的结构和酸性特征的重要发现,并阐明在水热或化学处理下甚至在分子水平上每个离散酸性位的连续演变过程,通过多尺度理论模拟。更具体地说,我们将描述探针辅助 SSNMR 方法的发展和应用,例如三甲基膦(TMP)和乙腈-(CDCN)与先进的二维(2D)同核和异核相关光谱相结合,用于表征各种固体催化剂中酸性位的结构和性质。此外,还研究了有关晶态金属氧化物纳米粒子各种晶面的表面指纹识别、相关空间相互作用的映射以及结构-活性相关性的验证等相关信息。相关讨论主要基于我们合作研究小组的最新 NMR 实验,包括(i)通过探针辅助 SSNMR 方法确定酸性特征,(ii)映射各种活性中心(或晶面),以及(iii)揭示它们对固体酸催化剂体系催化性能的影响。预计这些信息可以为我们对固体酸催化的深入理解提供更多的深入见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验