Wang Yingying, Wang Enliang, Zhou Jiaqi, Dorn Alexander, Ren Xueguang
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany.
J Chem Phys. 2021 Apr 14;154(14):144301. doi: 10.1063/5.0045531.
We investigate the formation mechanisms of covalently bound CH cations from direct ionization of hydrogen bonded dimers of acetylene molecules through fragment ion and electron coincident momentum spectroscopy and quantum chemistry calculations. The measurements of momenta and energies of two outgoing electrons and one ion in triple-coincidence allow us to assign the ionization channels associated with different ionic fragments. The measured binding energy spectra show that the formation of CH can be attributed to the ionization of the outermost 1π orbital of acetylene. The kinetic energy distributions of the ionic fragments indicate that the CH ions originate from direct ionization of acetylene dimers while ions resulting from the fragmentation of larger clusters would obtain significantly larger momenta. The formation of CH through the evaporation mechanism in larger clusters is not identified in the present experiments. The calculated potential energy curves show a potential well for the electronic ground state of (CH)2, supporting that the ionization of (CH) dimers can form stable CH⋅CH (1π ) cations. Further transition state analysis and ab initio molecular dynamics simulations reveal a detailed picture of the formation dynamics. After ionization of (CH), the system undergoes a significant rearrangement of the structure involving, in particular, C-C bond formation and hydrogen migrations, leading to different C4 isomers.
我们通过碎片离子与电子符合动量谱学以及量子化学计算,研究了乙炔分子氢键二聚体直接电离形成共价键结合的CH⁺阳离子的形成机制。三重符合测量两个出射电子和一个离子的动量与能量,使我们能够确定与不同离子碎片相关的电离通道。测得的结合能谱表明,CH⁺的形成可归因于乙炔最外层1π轨道的电离。离子碎片的动能分布表明,CH⁺离子源自乙炔二聚体的直接电离,而较大团簇碎片化产生的离子会获得明显更大的动量。本实验未发现通过较大团簇中的蒸发机制形成CH⁺的情况。计算得到的势能曲线显示(CH)₂电子基态存在一个势阱,支持(CH)二聚体的电离可形成稳定的CH⋅CH⁺(1π)阳离子。进一步的过渡态分析和从头算分子动力学模拟揭示了形成动力学的详细情况。(CH)电离后,系统经历了显著的结构重排,特别是涉及C-C键形成和氢迁移,导致不同的C₄异构体。