Apostolakos P, Galatis B
1 Institute of General Botany, University of Athens, Athens 157 84, Greece.
New Phytol. 1999 Feb;141(2):209-223. doi: 10.1046/j.1469-8137.1999.00348.x.
The post-cytokinetic guard cells of Asplenium nidus display a prominent perinuclear microtubule system and a few microtubules under the periclinal walls. Afterwards, microtubules appear on the whole surface of the ventral wall, whereas those below the periclinal walls proliferate and tend to become parallel with the ventral wall. The perinuclear microtubules gradually diminish but persist in later stages of guard cell differentiation. In post-cytokinetic guard cells, actin is found in the perinuclear cytoplasm and in the cortical cytoplasm lining all the walls. In differentiating guard cells, the following cortical microtubules and actin filament 'systems' appear in succession: (a) radial microtubule and actin filament arrays beneath the periclinal walls converging on the stomatal pore region, (b) anticlinal microtubule bundles, which are co-localized with actin filaments, along the ventral wall outlining the region of the stomatal pore, (c) periclinal microtubules and actin filaments on the polar ventral wall ends. These cytoskeletal systems, except for the radial actin filaments, persist in advanced stages of guard cell differentiation. Instead of the radial actin filaments, a prominent actin filament reticulum is organized under the margins of the developing wall thickenings of the stomatal pore. In addition, an extensive endoplasmic actin filament reticulum develops around the plastids. It seems likely that the successive microtubule systems in guard cells are formed by putative microtubule organizing centres operating in a definite spatial and temporal succession. Guard cell morphogenesis is the outcome of a definite process, in which the cortical microtubule cytoskeleton plays the primary role, implicated in the deposition of cellulose microfibrils and probably of the local wall thickenings. Callose or a callose-like glucan is deposited on the whole surface of the nascent ventral wall and in the wall regions where thickenings are deposited. Finally, the guard cells of Asplenium assume a kidney shape and display polar hypostomatic swellings. Particular structural features established in guard cell mother cells affect guard cell morphogenesis.
鸟巢蕨细胞分裂后的保卫细胞显示出一个显著的核周微管系统和一些位于平周壁下的微管。之后,微管出现在腹侧壁的整个表面,而平周壁下的微管则增殖并趋于与腹侧壁平行。核周微管逐渐减少,但在保卫细胞分化的后期仍持续存在。在细胞分裂后的保卫细胞中,肌动蛋白存在于核周细胞质和衬于所有细胞壁的皮质细胞质中。在分化的保卫细胞中,以下皮质微管和肌动蛋白丝“系统”相继出现:(a) 平周壁下汇聚于气孔孔区域的径向微管和肌动蛋白丝阵列,(b) 与肌动蛋白丝共定位的沿腹侧壁勾勒气孔孔区域的垂周微管束,(c) 极性腹侧壁末端的平周微管和肌动蛋白丝。这些细胞骨架系统,除了径向肌动蛋白丝外,在保卫细胞分化的后期阶段持续存在。在发育中的气孔孔壁增厚边缘下方,形成了一个显著的肌动蛋白丝网状结构,而不是径向肌动蛋白丝。此外,在质体周围形成了广泛的内质肌动蛋白丝网状结构。保卫细胞中相继出现的微管系统似乎是由假定的微管组织中心以确定的空间和时间顺序运作形成的。保卫细胞形态发生是一个确定过程的结果,其中皮质微管细胞骨架起主要作用,与纤维素微纤丝的沉积以及可能的局部壁增厚有关。胼胝质或类似胼胝质的葡聚糖沉积在新生腹侧壁的整个表面以及增厚部位的壁区域。最后,鸟巢蕨的保卫细胞呈肾形并显示极性下气孔肿胀。保卫细胞母细胞中建立的特定结构特征影响保卫细胞形态发生。