Suppr超能文献

纳米颗粒和分子在周期性李赛冈型结构中的自组装。

Self-organization of nanoparticles and molecules in periodic Liesegang-type structures.

作者信息

Ackroyd Amanda J, Holló Gábor, Mundoor Haridas, Zhang Honghu, Gang Oleg, Smalyukh Ivan I, Lagzi István, Kumacheva Eugenia

机构信息

Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.

BME-MTA Condensed Matter Physics Research Group, Budapest H-1111, Hungary.

出版信息

Sci Adv. 2021 Apr 16;7(16). doi: 10.1126/sciadv.abe3801. Print 2021 Apr.

Abstract

Chemical organization in reaction-diffusion systems offers a strategy for the generation of materials with ordered morphologies and structural hierarchy. Periodic structures are formed by either molecules or nanoparticles. On the premise of new directing factors and materials, an emerging frontier is the design of systems in which the precipitation partners are nanoparticles and molecules. We show that solvent evaporation from a suspension of cellulose nanocrystals (CNCs) and l-(+)-tartaric acid [l-(+)-TA] causes phase separation and precipitation, which, being coupled with a reaction/diffusion, results in rhythmic alternation of CNC-rich and l-(+)-TA-rich rings. The CNC-rich regions have a cholesteric structure, while the l-(+)-TA-rich bands are formed by radially aligned elongated bundles. The moving edge of the pattern propagates with a finite constant velocity, which enables control of periodicity by varying film preparation conditions. This work expands knowledge about self-organizing reaction-diffusion systems and offers a strategy for the design of self-organizing materials.

摘要

反应-扩散系统中的化学组织为生成具有有序形态和结构层次的材料提供了一种策略。周期性结构由分子或纳米颗粒形成。在新的导向因素和材料的前提下,一个新兴的前沿领域是设计沉淀伙伴为纳米颗粒和分子的系统。我们表明,从纤维素纳米晶体(CNC)和L-(+)-酒石酸 [L-(+)-TA] 的悬浮液中蒸发溶剂会导致相分离和沉淀,这与反应/扩散相结合,导致富含CNC和富含L-(+)-TA的环有节奏地交替出现。富含CNC的区域具有胆甾相结构,而富含L-(+)-TA的带由径向排列的细长束形成。图案的移动边缘以有限的恒定速度传播,这使得通过改变薄膜制备条件来控制周期性成为可能。这项工作扩展了关于自组织反应-扩散系统的知识,并为自组织材料的设计提供了一种策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24a6/8051880/b1fb8f32513c/abe3801-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验