Suppr超能文献

家系和关联研究中抽样设计的优化。

Optimization of sampling designs for pedigrees and association studies.

机构信息

Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.

Université Paris-Saclay, CNRS, IRD, Évolution, Génomes, Comportement, Écologie, 91198, Gif-sur-Yvette, France.

出版信息

Biometrics. 2022 Sep;78(3):1056-1066. doi: 10.1111/biom.13476. Epub 2021 May 3.

Abstract

In many studies, related individuals are phenotyped in order to infer how their genotype contributes to their phenotype, through the estimation of parameters such as breeding values or locus effects. When it is not possible to phenotype all the individuals, it is important to properly sample the population to improve the precision of the statistical analysis. This article studies how to optimize such sampling designs for pedigrees and association studies. Two sampling methods are developed, stratified sampling and D optimality. It is found that it is important to take account of mutation when sampling pedigrees with many generations: as the size of mutation effects increases, optimized designs sample more individuals in late generations. Optimized designs for association studies tend to improve the joint estimation of breeding values and locus effects, all the more as sample size is low and the genetic architecture of the trait is simple. When the trait is determined by few loci, they are reminiscent of classical experimental designs for regression models and tend to select homozygous individuals. When the trait is determined by many loci, locus effects may be difficult to estimate, even if an optimized design is used.

摘要

在许多研究中,为了推断个体的基因型如何影响其表型,通过估计诸如育种值或基因座效应等参数,对相关个体进行表型分析。当不可能对所有个体进行表型分析时,对群体进行适当的抽样以提高统计分析的精度非常重要。本文研究了如何针对系谱和关联研究优化此类抽样设计。提出了两种抽样方法,即分层抽样和 D 最优性。研究发现,在对具有多代的系谱进行抽样时,考虑突变非常重要:随着突变效应的增大,优化设计会在后期世代中抽取更多的个体。对于关联研究的优化设计往往可以提高对育种值和基因座效应的联合估计,特别是在样本量较低且性状的遗传结构简单的情况下。当性状由少数几个基因座决定时,它们类似于回归模型的经典实验设计,并且往往选择纯合个体。当性状由许多基因座决定时,即使使用优化设计,也可能难以估计基因座效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验