Faculty of Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
Department of Biochemical Engineering, University College London, Gower Street, London, WC1H 6BT, UK.
Chemosphere. 2021 Sep;279:130512. doi: 10.1016/j.chemosphere.2021.130512. Epub 2021 Apr 15.
This study has demonstrated, for the first time, a simple, fast and flexible microwave processing method for the simultaneous preparation of bio-products (bio-oil, bio-gas and biochar) using a methodology that avoids any form of catalyst or chemical activation. The dielectric properties of biomass and physicochemical characterisation such as TGA, elemental and proximate analysis, XRD, SEM/EDX and textural properties, showed that 8 kJ g of microwave energy can produce superior biochars for applications in CO capture. The maximum CO uptake capacity for biochar produced was 2.5 mmol g and 2.0 mmol g at 0 and 25 °C and 1 bar, which and also exhibited high gas selectivity compared with N, fast kinetics of adsorption (<10 min) and desirable reusability (>95%) after 20 cycles. GC-MS analysis of generated bio-oil products revealed that higher microwave energies (>8 kJ g) significantly enhanced the amount of bio-oil produced (39%) and specifically the formation of levoglucosan, furfural and phenolics compounds, and bio-gas analysis identified trace levels of H and CH. The results from this study confirm a green, inexpensive and efficient approach for biomass valorisation which can easily be embedded within bio-refinery process, and also demonstrates the potential of biochars for post-combustion CO uptake.
本研究首次展示了一种简单、快速且灵活的微波处理方法,可用于同时制备生物产品(生物油、生物气和生物炭),该方法避免了任何形式的催化剂或化学活化。生物质的介电特性和热重分析(TGA)、元素和近似分析、XRD、SEM/EDX 以及结构特性等物理化学特性表明,8kJ/g 的微波能量可产生用于 CO 捕获的优质生物炭。所制备的生物炭的最大 CO 吸收容量在 0 和 25°C 和 1 巴时分别为 2.5mmol/g 和 2.0mmol/g,与 N 相比表现出较高的气体选择性,吸附动力学较快(<10 分钟),经过 20 次循环后可重复使用性>95%。生成的生物油产物的 GC-MS 分析表明,较高的微波能量(>8kJ/g)可显著增加生物油的产量(39%),特别是左旋葡聚糖、糠醛和酚类化合物的形成,生物气分析则确定了痕量的 H 和 CH。本研究的结果证实了一种绿色、廉价且高效的生物质增值方法,可轻松嵌入生物精炼过程中,同时也证明了生物炭在燃烧后 CO 吸收方面的潜力。