The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, U.S.A.
Biochem J. 2021 May 14;478(9):1769-1781. doi: 10.1042/BCJ20210162.
Nucleobases within DNA are attacked by reactive oxygen species to produce 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major oxidative lesions. The high mutagenicity of oxoG is attributed to the lesion's ability to adopt syn-oxoG:anti-dA with Watson-Crick-like geometry. Recent studies have revealed that Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) inserts nucleotide opposite oxoA in an error-prone manner and accommodates syn-oxoA:anti-dGTP with Watson-Crick-like geometry, highlighting a promutagenic nature of oxoA. To gain further insights into the bypass of oxoA by Dpo4, we have conducted kinetic and structural studies of Dpo4 extending oxoA:dT and oxoA:dG by incorporating dATP opposite templating dT. The extension past oxoA:dG was ∼5-fold less efficient than that past oxoA:dT. Structural studies revealed that Dpo4 accommodated dT:dATP base pair past anti-oxoA:dT with little structural distortion. In the Dpo4-oxoA:dG extension structure, oxoA was in an anti conformation and did not form hydrogen bonds with the primer terminus base. Unexpectedely, the dG opposite oxoA exited the primer terminus site and resided in an extrahelical site, where it engaged in minor groove contacts to the two immediate upstream bases. The extrahelical dG conformation appears to be induced by the stabilization of anti-oxoA conformation via bifurcated hydrogen bonds with Arg332. This unprecedented structure suggests that Dpo4 may use Arg332 to sense 8-oxopurines at the primer terminus site and slow the extension from the mismatch by promoting anti conformation of 8-oxopurines.
DNA 中的碱基会受到活性氧的攻击,产生 7,8-二氢-8-氧鸟嘌呤(oxoG)和 7,8-二氢-8-氧腺嘌呤(oxoA)作为主要的氧化损伤。oxoG 的高突变性归因于该损伤物采用类似 Watson-Crick 的几何结构形成 syn-oxoG:anti-dA。最近的研究表明,极端嗜热古菌 Sulfolobus solfataricus P2 DNA 聚合酶 IV(Dpo4)以易错的方式在 oxoA 碱基处插入核苷酸,并以类似 Watson-Crick 的几何结构容纳 syn-oxoA:anti-dGTP,突出了 oxoA 的促突变性质。为了更深入地了解 Dpo4 对 oxoA 的绕过机制,我们进行了动力学和结构研究,研究了 Dpo4 在 oxoA:dT 和 oxoA:dG 模板上掺入 dATP 延伸的过程。oxoA:dG 的延伸效率比 oxoA:dT 的延伸效率低约 5 倍。结构研究表明,Dpo4 在 oxoA:dT 处基本没有结构扭曲地容纳了 dT:dATP 碱基对。在 Dpo4-oxoA:dG 延伸结构中,oxoA 呈反式构象,与引物末端碱基没有形成氢键。出人意料的是,与 oxoA 相对的 dG 离开引物末端位置并位于非螺旋位置,在那里它与两个紧邻的上游碱基发生小沟接触。这种非螺旋 dG 构象似乎是通过与 Arg332 形成分叉氢键稳定反式 oxoA 构象而诱导产生的。这种前所未有的结构表明,Dpo4 可能利用 Arg332 在引物末端位置识别 8-氧嘌呤,并通过促进 8-氧嘌呤形成反式构象来减缓错配的延伸。