Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
Department of Computer Science, Yonsei University, Seoul, Republic of Korea.
J Med Internet Res. 2021 May 6;23(5):e27460. doi: 10.2196/27460.
BACKGROUND: The COVID-19 pandemic has limited daily activities and even contact between patients and primary care providers. This makes it more difficult to provide adequate primary care services, which include connecting patients to an appropriate medical specialist. A smartphone-compatible artificial intelligence (AI) chatbot that classifies patients' symptoms and recommends the appropriate medical specialty could provide a valuable solution. OBJECTIVE: In order to establish a contactless method of recommending the appropriate medical specialty, this study aimed to construct a deep learning-based natural language processing (NLP) pipeline and to develop an AI chatbot that can be used on a smartphone. METHODS: We collected 118,008 sentences containing information on symptoms with labels (medical specialty), conducted data cleansing, and finally constructed a pipeline of 51,134 sentences for this study. Several deep learning models, including 4 different long short-term memory (LSTM) models with or without attention and with or without a pretrained FastText embedding layer, as well as bidirectional encoder representations from transformers for NLP, were trained and validated using a randomly selected test data set. The performance of the models was evaluated on the basis of the precision, recall, F-score, and area under the receiver operating characteristic curve (AUC). An AI chatbot was also designed to make it easy for patients to use this specialty recommendation system. We used an open-source framework called "Alpha" to develop our AI chatbot. This takes the form of a web-based app with a frontend chat interface capable of conversing in text and a backend cloud-based server application to handle data collection, process the data with a deep learning model, and offer the medical specialty recommendation in a responsive web that is compatible with both desktops and smartphones. RESULTS: The bidirectional encoder representations from transformers model yielded the best performance, with an AUC of 0.964 and F-score of 0.768, followed by LSTM model with embedding vectors, with an AUC of 0.965 and F-score of 0.739. Considering the limitations of computing resources and the wide availability of smartphones, the LSTM model with embedding vectors trained on our data set was adopted for our AI chatbot service. We also deployed an Alpha version of the AI chatbot to be executed on both desktops and smartphones. CONCLUSIONS: With the increasing need for telemedicine during the current COVID-19 pandemic, an AI chatbot with a deep learning-based NLP model that can recommend a medical specialty to patients through their smartphones would be exceedingly useful. This chatbot allows patients to identify the proper medical specialist in a rapid and contactless manner, based on their symptoms, thus potentially supporting both patients and primary care providers.
背景:COVID-19 大流行限制了患者和初级保健提供者的日常活动,甚至限制了他们之间的接触。这使得提供足够的初级保健服务更加困难,其中包括将患者与合适的医学专家联系起来。一个兼容智能手机的人工智能(AI)聊天机器人,可以对患者的症状进行分类并推荐合适的医学专业,这可能是一个有价值的解决方案。
目的:为了建立一种非接触式的推荐医学专业的方法,本研究旨在构建一个基于深度学习的自然语言处理(NLP)管道,并开发一个可在智能手机上使用的 AI 聊天机器人。
方法:我们收集了 118008 个包含症状信息和标签(医学专业)的句子,进行了数据清理,最终构建了一个包含 51134 个句子的管道用于本研究。训练和验证了几种深度学习模型,包括 4 种不同的带有或不带有注意力机制的长短时记忆(LSTM)模型,以及带有或不带有预训练的 FastText 嵌入层的双向编码器表示的转换器,用于自然语言处理。使用随机选择的测试数据集评估模型的性能,包括准确率、召回率、F 分数和接收者操作特征曲线下的面积(AUC)。还设计了一个 AI 聊天机器人,使患者更容易使用这个专业推荐系统。我们使用了一个名为“Alpha”的开源框架来开发我们的 AI 聊天机器人。这是一个基于网络的应用程序,具有前端聊天界面,可以进行文本对话,以及后端基于云的服务器应用程序,用于处理数据、使用深度学习模型进行数据处理,并在响应式网络中提供与桌面和智能手机兼容的医学专业推荐。
结果:双向编码器表示的转换器模型表现最佳,AUC 为 0.964,F 分数为 0.768,其次是带有嵌入向量的 LSTM 模型,AUC 为 0.965,F 分数为 0.739。考虑到计算资源的限制和智能手机的广泛可用性,我们采用了在我们的数据集上训练的带有嵌入向量的 LSTM 模型作为我们的 AI 聊天机器人服务。我们还部署了 AI 聊天机器人的 Alpha 版本,可在桌面和智能手机上执行。
结论:在当前 COVID-19 大流行期间,对远程医疗的需求不断增加,因此通过智能手机为患者提供医学专业推荐的基于深度学习的 NLP 模型的 AI 聊天机器人将非常有用。这个聊天机器人可以让患者根据自己的症状快速、非接触地识别出合适的医学专家,从而为患者和初级保健提供者提供支持。
Sensors (Basel). 2022-8-10
Int J Med Inform. 2023-2
Explor Res Clin Soc Pharm. 2024-2-15
Healthcare (Basel). 2025-7-7
Bioengineering (Basel). 2025-3-13
JMIR Bioinform Biotechnol. 2024-11-6
Asia Pac J Ophthalmol (Phila). 2024
J Med Internet Res. 2024-1-5
Front Med (Lausanne). 2022-8-8
Yearb Med Inform. 2022-8
J Med Internet Res. 2021-2-16
J Med Internet Res. 2020-12-18
J Med Internet Res. 2020-10-22
BMC Public Health. 2020-8-1
J Med Internet Res. 2020-5-26