Suppr超能文献

巨噬细胞的代谢重编程及其在炎症性疾病中的作用

Metabolic reprogramming of macrophages and its involvement in inflammatory diseases.

作者信息

Guo Chunyu, Islam Rayhanul, Zhang Shichen, Fang Jun

机构信息

Department of Toxicology, School of Public Health, Anhui Medical University, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei 230032, China.

Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.

出版信息

EXCLI J. 2021 Mar 11;20:628-641. doi: 10.17179/excli2020-3053. eCollection 2021.

Abstract

Macrophages are critical effector cells of the innate immune system. The presence of microbes or the stimulation by inflammatory factors triggers the metabolic reprogramming of macrophages or macrophage polarization into two phenotypes: the classically activated macrophages (M1) displaying a pro-inflammatory phenotype and the alternatively activated macrophages (M2) having anti-inflammatory functions. The imbalance between the two phenotypes has been linked with various pathological states, such as fibrosis, hepatitis, colitis, and tumor progression. An avenue of potential therapeutic strategies based on macrophage polarization has emerged. Therefore, it is essential to understand the mechanisms of macrophage polarization. In this review, we focus on the macrophage polarization process and discuss the stimuli-dependent conversion into M1 and M2 phenotypes. We also present the metabolic patterns supporting their specific functions. The factors and signaling cascades involved in intra-class switching are also detailed. Finally, the role of macrophage polarization in disease progression is discussed.

摘要

巨噬细胞是先天性免疫系统的关键效应细胞。微生物的存在或炎症因子的刺激会触发巨噬细胞的代谢重编程,或使巨噬细胞极化为两种表型:表现出促炎表型的经典活化巨噬细胞(M1)和具有抗炎功能的替代性活化巨噬细胞(M2)。这两种表型之间的失衡与多种病理状态有关,如纤维化、肝炎、结肠炎和肿瘤进展。基于巨噬细胞极化的潜在治疗策略应运而生。因此,了解巨噬细胞极化的机制至关重要。在本综述中,我们聚焦于巨噬细胞极化过程,讨论依赖刺激转化为M1和M2表型的情况。我们还介绍了支持其特定功能的代谢模式。同时也详细阐述了类内转换所涉及的因子和信号级联反应。最后,讨论了巨噬细胞极化在疾病进展中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1523/8056050/c0652fb5e17d/EXCLI-20-628-t-001.jpg

相似文献

1
Metabolic reprogramming of macrophages and its involvement in inflammatory diseases.
EXCLI J. 2021 Mar 11;20:628-641. doi: 10.17179/excli2020-3053. eCollection 2021.
2
Macrophages: The Good, the Bad, and the Gluttony.
Front Immunol. 2021 Aug 12;12:708186. doi: 10.3389/fimmu.2021.708186. eCollection 2021.
3
Macrophage plasticity, polarization, and function in health and disease.
J Cell Physiol. 2018 Sep;233(9):6425-6440. doi: 10.1002/jcp.26429. Epub 2018 Mar 1.
4
The Metabolic Prospective and Redox Regulation of Macrophage Polarization.
J Clin Cell Immunol. 2015 Dec;6(6). doi: 10.4172/2155-9899.1000371. Epub 2015 Nov 30.
5
The roles of macrophage polarization in the host immune response to sepsis.
Int Immunopharmacol. 2021 Jul;96:107791. doi: 10.1016/j.intimp.2021.107791. Epub 2021 May 29.
6
Immunomodulatory effects of curcumin on macrophage polarization in rheumatoid arthritis.
Front Pharmacol. 2024 Feb 28;15:1369337. doi: 10.3389/fphar.2024.1369337. eCollection 2024.
7
Visualizing Macrophage Phenotypes and Polarization in Diseases: From Biomarkers to Molecular Probes.
Phenomics. 2023 Oct 24;3(6):613-638. doi: 10.1007/s43657-023-00129-7. eCollection 2023 Dec.
8
Macrophage Polarization Induced by Probiotic Bacteria: a Concise Review.
Probiotics Antimicrob Proteins. 2020 Sep;12(3):798-808. doi: 10.1007/s12602-019-09612-y.
9
Macrophage Polarization: Implications on Metabolic Diseases and the Role of Exercise.
Crit Rev Eukaryot Gene Expr. 2016;26(2):115-32. doi: 10.1615/CritRevEukaryotGeneExpr.2016015920.
10
Metabolic reprogramming of macrophages during infections and cancer.
Cancer Lett. 2019 Jun 28;452:14-22. doi: 10.1016/j.canlet.2019.03.015. Epub 2019 Mar 21.

引用本文的文献

1
Targeting Kupffer Cell Enolase 1 Attenuates Liver Inflammation and Injury in Hemorrhagic Shock.
Int J Mol Sci. 2025 Aug 28;26(17):8340. doi: 10.3390/ijms26178340.
2
Uncovering pleiotropic loci in allergic rhinitis and leukocyte traits through multi-trait GWAS.
Sci Rep. 2025 Jul 2;15(1):23057. doi: 10.1038/s41598-025-07100-8.
3
Impact of Smoking on Macrophage-Related Chemokines During Initial Peri-Implantitis: A Prospective Cohort Study.
Clin Implant Dent Relat Res. 2025 Jun;27(3):e70052. doi: 10.1111/cid.70052.
8
Lactate and lactylation in macrophage metabolic reprogramming: current progress and outstanding issues.
Front Immunol. 2024 May 21;15:1395786. doi: 10.3389/fimmu.2024.1395786. eCollection 2024.
9
Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma.
Int J Mol Sci. 2023 Jun 21;24(13):10451. doi: 10.3390/ijms241310451.
10
NOD2 in monocytes negatively regulates macrophage development through TNFalpha.
Front Immunol. 2023 Jun 21;14:1181823. doi: 10.3389/fimmu.2023.1181823. eCollection 2023.

本文引用的文献

1
Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway.
PLoS Genet. 2020 Apr 9;16(4):e1008692. doi: 10.1371/journal.pgen.1008692. eCollection 2020 Apr.
2
Oxidative Stress in Pulmonary Fibrosis.
Compr Physiol. 2020 Mar 12;10(2):509-547. doi: 10.1002/cphy.c190017.
3
Microcystin-LR ameliorates pulmonary fibrosis via modulating CD206 M2-like macrophage polarization.
Cell Death Dis. 2020 Feb 19;11(2):136. doi: 10.1038/s41419-020-2329-z.
4
Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis.
Pharmacol Res. 2020 Feb;152:104591. doi: 10.1016/j.phrs.2019.104591. Epub 2019 Dec 16.
5
Role of Metabolic Reprogramming in Pulmonary Innate Immunity and Its Impact on Lung Diseases.
J Innate Immun. 2020;12(1):31-46. doi: 10.1159/000504344. Epub 2019 Nov 29.
6
Pivotal Role of Mitochondria in Macrophage Response to Bacterial Pathogens.
Front Immunol. 2019 Oct 23;10:2461. doi: 10.3389/fimmu.2019.02461. eCollection 2019.
7
Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease.
Front Immunol. 2019 Oct 4;10:2265. doi: 10.3389/fimmu.2019.02265. eCollection 2019.
8
The Human G Protein-Coupled ATP Receptor P2Y Is Associated With IL-10 Driven Macrophage Differentiation.
Front Immunol. 2019 Aug 9;10:1870. doi: 10.3389/fimmu.2019.01870. eCollection 2019.
9
Macrophage HIF-2α regulates tumor-suppressive Spint1 in the tumor microenvironment.
Mol Carcinog. 2019 Nov;58(11):2127-2138. doi: 10.1002/mc.23103. Epub 2019 Aug 22.
10
Metallothionein 3 Controls the Phenotype and Metabolic Programming of Alternatively Activated Macrophages.
Cell Rep. 2019 Jun 25;27(13):3873-3886.e7. doi: 10.1016/j.celrep.2019.05.093.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验