Suppr超能文献

利用变形关系型对抗样本来突破神经推理架构。

Breaking Neural Reasoning Architectures With Metamorphic Relation-Based Adversarial Examples.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6976-6982. doi: 10.1109/TNNLS.2021.3072166. Epub 2022 Oct 27.

Abstract

The ability to read, reason, and infer lies at the heart of neural reasoning architectures. After all, the ability to perform logical reasoning over language remains a coveted goal of Artificial Intelligence. To this end, models such as the Turing-complete differentiable neural computer (DNC) boast of real logical reasoning capabilities, along with the ability to reason beyond simple surface-level matching. In this brief, we propose the first probe into DNC's logical reasoning capabilities with a focus on text-based question answering (QA). More concretely, we propose a conceptually simple but effective adversarial attack based on metamorphic relations. Our proposed adversarial attack reduces DNCs' state-of-the-art accuracy from 100% to 1.5% in the worst case, exposing weaknesses and susceptibilities in modern neural reasoning architectures. We further empirically explore possibilities to defend against such attacks and demonstrate the utility of our adversarial framework as a simple scalable method to improve model adversarial robustness.

摘要

阅读、推理和推断的能力是神经推理架构的核心。毕竟,对语言进行逻辑推理的能力仍然是人工智能的一个令人向往的目标。为此,像图灵完备可微分神经网络(DNC)这样的模型,具有真正的逻辑推理能力,以及超越简单表面匹配的推理能力。在这份简短的报告中,我们首次提出了对 DNC 逻辑推理能力的探究,重点是基于文本的问答(QA)。更具体地说,我们提出了一种基于同形关系的概念上简单但有效的对抗攻击。我们提出的对抗攻击将 DNC 的最先进的准确率从 100%降低到最坏情况下的 1.5%,暴露了现代神经推理架构的弱点和敏感性。我们进一步实证地探索了抵御此类攻击的可能性,并展示了我们的对抗框架作为一种简单可扩展的方法来提高模型对抗鲁棒性的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验