Suppr超能文献

用于对嘈杂超声图像中的多类肾脏异常进行分类的计算机辅助诊断系统。

Computer-aided diagnosis system for the classification of multi-class kidney abnormalities in the noisy ultrasound images.

机构信息

Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai-600127, India.

Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai-600127, India.

出版信息

Comput Methods Programs Biomed. 2021 Jun;205:106071. doi: 10.1016/j.cmpb.2021.106071. Epub 2021 Apr 8.

Abstract

BACKGROUND AND OBJECTIVE

The primary causes of kidney failure are chronic and polycystic kidney diseases. Cyst, stone, and tumor development lead to chronic kidney diseases that commonly impair kidney functions. The kidney diseases are asymptomatic and do not show any significant symptoms at its initial stage. Therefore, diagnosing the kidney diseases at their earlier stage is required to prevent the loss of kidney function and kidney failure.

METHODS

This paper proposes a computer-aided diagnosis (CAD) system for detecting multi-class kidney abnormalities from ultrasound images. The presented CAD system uses a pre-trained ResNet-101 model for extracting the features and support vector machine (SVM) classifier for the classification purpose. Ultrasound images usually gets affected by speckle noise that degrades the image quality and performance of the CAD system. Hence, it is necessary to remove speckle noise from the ultrasound images. Therefore, a CAD based system is proposed with the despeckling module using a deep residual learning network (RLN) to reduce speckle noise. Pre-processing of ultrasound images using deep RLN helps to drastically improve the classification performance of the CAD system. The proposed CAD system achieved better prediction results when compared to the existing state-of-the-art methods.

RESULTS

To validate the proposed CAD system performance, the experiments have been carried out in the noisy kidney ultrasound images. The designed system framework achieved the maximum classification accuracy when compared to the existing approaches. The SVM classifier is selected for the CAD system based on performance comparison with various classifiers like K-nearest neighbour, tree, discriminant, Naive Bayes, and linear.

CONCLUSIONS

The proposed CAD system outperforms in classifying the noisy kidney ultrasound images precisely as compared to the existing state-of-the-art methods. Further, the CAD system is evaluated in terms of selectivity and sensitivity scores. The presented CAD system with the pre-processing module would serve as a real-time supporting tool for diagnosing multi-class kidney abnormalities from the ultrasound images.

摘要

背景与目的

肾衰竭的主要病因是慢性和多囊肾病。囊肿、结石和肿瘤的发展导致慢性肾病,通常会损害肾功能。这些肾病在初期没有任何明显症状,因此需要更早地诊断肾病,以防止肾功能丧失和肾衰竭。

方法

本文提出了一种用于从超声图像中检测多类肾脏异常的计算机辅助诊断 (CAD) 系统。该 CAD 系统使用预先训练的 ResNet-101 模型提取特征,并使用支持向量机 (SVM) 分类器进行分类。超声图像通常会受到斑点噪声的影响,从而降低图像质量和 CAD 系统的性能。因此,需要从超声图像中去除斑点噪声。因此,提出了一种基于 CAD 的系统,该系统具有去噪模块,使用深度残差学习网络 (RLN) 来减少斑点噪声。使用深度 RLN 对超声图像进行预处理有助于极大地提高 CAD 系统的分类性能。与现有的最先进方法相比,所提出的 CAD 系统取得了更好的预测结果。

结果

为了验证所提出的 CAD 系统的性能,在噪声肾脏超声图像中进行了实验。与现有的方法相比,所设计的系统框架实现了最高的分类精度。基于与各种分类器(如 K-最近邻、树、判别、朴素贝叶斯和线性)的性能比较,选择 SVM 分类器作为 CAD 系统。

结论

与现有的最先进方法相比,所提出的 CAD 系统在对噪声肾脏超声图像进行分类方面表现出色。此外,还根据选择性和敏感性评分对 CAD 系统进行了评估。所提出的具有预处理模块的 CAD 系统将作为一种实时支持工具,用于从超声图像中诊断多类肾脏异常。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验