Suppr超能文献

基于荧光共振能量转移的显微镜检测法,用于以单转运体分辨率测量膜氨基酸转运体的活性。

FRET-based Microscopy Assay to Measure Activity of Membrane Amino Acid Transporters with Single-transporter Resolution.

作者信息

Ciftci Didar, Huysmans Gerard H M, Wang Xiaoyu, He Changhao, Terry Daniel, Zhou Zhou, Fitzgerald Gabriel, Blanchard Scott C, Boudker Olga

机构信息

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA.

Tri-Institutional Training Program in Chemical Biology, New York, USA.

出版信息

Bio Protoc. 2021 Apr 5;11(7):e3970. doi: 10.21769/BioProtoc.3970.

Abstract

Secondary active transporters reside in cell membranes transporting polar solutes like amino acids against steep concentration gradients, using electrochemical gradients of ions as energy sources. Commonly, ensemble-based measurements of radiolabeled substrate uptakes or transport currents inform on kinetic parameters of transporters. Here we describe a fluorescence-based functional assay for glutamate and aspartate transporters that provides single-transporter, single-transport cycle resolution using an archaeal elevator-type sodium and aspartate symporter Glt as a model system. We prepare proteo-liposomes containing reconstituted purified Glt transporters and an encapsulated periplasmic glutamate/aspartate-binding protein, PEB1a, labeled with donor and acceptor fluorophores. We then surface-immobilize the proteo-liposomes and measure transport-dependent Fluorescence Resonance Energy Transfer (FRET) efficiency changes over time using single-molecule Total Internal Reflection Fluorescence (TIRF) microscopy. The assay provides a 10-100 fold increase in temporal resolution compared to radioligand uptake assays. It also allows kinetic characterization of different transport cycle steps and discerns kinetic heterogeneities within the transporter population.

摘要

次级主动转运蛋白存在于细胞膜中,利用离子的电化学梯度作为能量来源,逆着陡峭的浓度梯度运输极性溶质,如氨基酸。通常,基于整体的放射性标记底物摄取或运输电流测量可提供转运蛋白的动力学参数信息。在此,我们描述了一种基于荧光的谷氨酸和天冬氨酸转运蛋白功能测定方法,该方法使用古细菌电梯型钠和天冬氨酸同向转运蛋白Glt作为模型系统,提供单转运蛋白、单运输循环分辨率。我们制备了含有重组纯化的Glt转运蛋白和用供体和受体荧光团标记的封装周质谷氨酸/天冬氨酸结合蛋白PEB1a的蛋白脂质体。然后,我们将蛋白脂质体固定在表面,并使用单分子全内反射荧光(TIRF)显微镜测量随时间变化的依赖运输的荧光共振能量转移(FRET)效率变化。与放射性配体摄取测定相比,该测定方法的时间分辨率提高了10 - 100倍。它还允许对不同运输循环步骤进行动力学表征,并识别转运蛋白群体中的动力学异质性。

相似文献

2
Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii.
J Biol Chem. 2009 Jun 26;284(26):17540-8. doi: 10.1074/jbc.M109.005926. Epub 2009 Apr 20.
3
Molecular Determinants of Substrate Specificity in Sodium-coupled Glutamate Transporters.
J Biol Chem. 2015 Nov 27;290(48):28988-96. doi: 10.1074/jbc.M115.682666. Epub 2015 Oct 16.
4
Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder.
Sci Adv. 2020 May 29;6(22):eaaz1949. doi: 10.1126/sciadv.aaz1949. eCollection 2020 May.
5
Investigation of the allosteric coupling mechanism in a glutamate transporter homolog via unnatural amino acid mutagenesis.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15939-15946. doi: 10.1073/pnas.1907852116. Epub 2019 Jul 22.
6
Linking function to global and local dynamics in an elevator-type transporter.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2025520118.
7
Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters.
Nature. 2013 Oct 3;502(7469):119-23. doi: 10.1038/nature12538.
8
Transport mechanism of a glutamate transporter homologue GltPh.
Biochem Soc Trans. 2016 Jun 15;44(3):898-904. doi: 10.1042/BST20160055.
9
Low Affinity and Slow Na+ Binding Precedes High Affinity Aspartate Binding in the Secondary-active Transporter GltPh.
J Biol Chem. 2015 Jun 26;290(26):15962-72. doi: 10.1074/jbc.M115.656876. Epub 2015 Apr 28.
10
Kinetic mechanism of coupled binding in sodium-aspartate symporter GltPh.
Elife. 2018 Sep 26;7:e37291. doi: 10.7554/eLife.37291.

引用本文的文献

1
Free fatty acids inhibit an ion-coupled membrane transporter by dissipating the ion gradient.
J Biol Chem. 2024 Dec;300(12):107955. doi: 10.1016/j.jbc.2024.107955. Epub 2024 Nov 2.
2
Structural basis of pH-dependent activation in a CLC transporter.
Nat Struct Mol Biol. 2024 Apr;31(4):644-656. doi: 10.1038/s41594-023-01210-5. Epub 2024 Jan 26.
3
Elucidating the Mechanism Behind Sodium-Coupled Neurotransmitter Transporters by Reconstitution.
Neurochem Res. 2022 Jan;47(1):127-137. doi: 10.1007/s11064-021-03413-y. Epub 2021 Aug 4.

本文引用的文献

1
Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder.
Sci Adv. 2020 May 29;6(22):eaaz1949. doi: 10.1126/sciadv.aaz1949. eCollection 2020 May.
2
Quantifying secondary transport at single-molecule resolution.
Nature. 2019 Nov;575(7783):528-534. doi: 10.1038/s41586-019-1747-5. Epub 2019 Nov 13.
3
Shared Molecular Mechanisms of Membrane Transporters.
Annu Rev Biochem. 2016 Jun 2;85:543-72. doi: 10.1146/annurev-biochem-060815-014520. Epub 2016 Mar 21.
4
Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale.
Nat Methods. 2016 Apr;13(4):341-4. doi: 10.1038/nmeth.3769. Epub 2016 Feb 15.
5
Transporter assays as useful in vitro tools in drug discovery and development.
Expert Opin Drug Discov. 2016;11(1):91-103. doi: 10.1517/17460441.2016.1101064. Epub 2015 Oct 29.
6
Applications and advances of metabolite biosensors for metabolic engineering.
Metab Eng. 2015 Sep;31:35-43. doi: 10.1016/j.ymben.2015.06.008. Epub 2015 Jul 2.
7
Mechanisms of glutamate transport.
Physiol Rev. 2013 Oct;93(4):1621-57. doi: 10.1152/physrev.00007.2013.
8
Freeze-anneal-thaw cycling of unilamellar liposomes: effect on encapsulation efficiency.
Pharm Res. 2014 Jan;31(1):97-103. doi: 10.1007/s11095-013-1135-z. Epub 2013 Jul 24.
9
Ultrasensitive fluorescent proteins for imaging neuronal activity.
Nature. 2013 Jul 18;499(7458):295-300. doi: 10.1038/nature12354.
10
Transport dynamics in a glutamate transporter homologue.
Nature. 2013 Oct 3;502(7469):114-8. doi: 10.1038/nature12265. Epub 2013 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验