Igarashi Yu, Nochioka Kotaro, Sakata Yasuhiko, Tamai Tokiwa, Ohkouchi Shinya, Irokawa Toshiya, Ogawa Hiromasa, Hayashi Hideka, Fujihashi Takahide, Yamanaka Shinsuke, Shiroto Takashi, Miyata Satoshi, Hata Jun, Yamada Shogo, Ninomiya Toshiharu, Yasuda Satoshi, Kurosawa Hajime, Shimokawa Hiroaki
Department of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan.
Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
Int J Cardiol Heart Vasc. 2021 Mar 31;34:100762. doi: 10.1016/j.ijcha.2021.100762. eCollection 2021 Jun.
Few risk models are available to predict future onset of atrial fibrillation (AF) in workers. We aimed to develop risk prediction models for new-onset AF, using annual health checkup (HC) data with electrocardiogram findings.
We retrospectively included 56,288 factory or office workers (mean age = 51.5 years, 33.0% women) who underwent a HC at a medical center and fulfilled the following criteria; age 40 years, no history of AF, and annual follow-up HC in 2013-2016. Using Cox models with the Akaike information criterion, we developed and compared prediction models for new-onset AF with and without the Minnesota code information. We externally validated the discrimination accuracy of the models in a general Japanese population cohort, the Hisayama cohort. During the median 3.0-year follow-up, 209 (0.37%) workers developed AF. Age, sex, waist circumference, blood pressure, LDL cholesterol, and γ-GTP were associated with new-onset of AF. Using the Minnesota code information, the AUC significantly improved from 0.82 to 0.84 in the derivation cohort and numerically improved from 0.78 to 0.79 in the validation cohort, and from 0.77 to 0.79 in the Hisayama cohort. The NRI and IDI significantly improved in all and male subjects in both the derivation and validation cohorts, and in female subjects in both the validation and the Hisayama cohorts.
We developed useful risk model with Minnesota code information for predicting new-onset AF from large worker population validated in the original and external cohorts, although study interpretation is limited by small improvement of AUC.
目前几乎没有风险模型可用于预测工人未来发生心房颤动(AF)的情况。我们旨在利用包含心电图结果的年度健康检查(HC)数据,开发新发AF的风险预测模型。
我们回顾性纳入了56288名工厂或办公室工作人员(平均年龄=51.5岁,女性占33.0%),这些人员在一家医疗中心接受了HC,并符合以下标准:年龄≥40岁,无AF病史,且在2013 - 2016年进行年度随访HC。使用带有赤池信息准则的Cox模型,我们开发并比较了有无明尼苏达编码信息的新发AF预测模型。我们在一个普通日本人群队列——久山队列中对模型的判别准确性进行了外部验证。在中位3.0年的随访期间,209名(0.37%)工人发生了AF。年龄、性别、腰围、血压、低密度脂蛋白胆固醇和γ - 谷氨酰转肽酶与新发AF相关。使用明尼苏达编码信息,在推导队列中AUC从0.82显著提高到0.84,在验证队列中从0.78数值上提高到0.79,在久山队列中从0.77提高到0.79。在推导和验证队列中的所有受试者以及男性受试者中,以及在验证和久山队列中的女性受试者中,净重新分类指数(NRI)和综合判别改善指数(IDI)均显著提高。
我们开发了一个带有明尼苏达编码信息的有用风险模型,用于从在原始队列和外部队列中验证的大量工人人群中预测新发AF,尽管研究解释因AUC的小幅改善而受到限制。