Steindl P, Snijders H, Westra G, Hissink E, Iakovlev K, Polla S, Frey J A, Norman J, Gossard A C, Bowers J E, Bouwmeester D, Löffler W
Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, Netherlands.
Department of Physics, University of California, Santa Barbara, California 93106, USA.
Phys Rev Lett. 2021 Apr 9;126(14):143601. doi: 10.1103/PhysRevLett.126.143601.
Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous single-photon stream using quantum interference in an optical Sagnac loop, we create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states. We demonstrate this experimentally using a true single-photon stream produced by a semiconductor quantum dot in an optical microcavity, and show that we can obtain light with g^{(2)}(0)→1 in agreement with our theory, which can only be explained by quantum interference of at least 3 photons. The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons, making them a resource for multiphoton entanglement.
相干光态由不同光子数(福克)态的量子叠加组成,但由于它们不构成正交基,通过线性光学无法从其中获得光子数态。在此,我们展示了相反的情况,通过在光学萨格纳克环中利用量子干涉来操纵随机连续单光子流,我们创建了具有可调谐光子统计特性的工程化光量子态,包括近似弱相干态。我们使用光学微腔中的半导体量子点产生的真正单光子流进行了实验演示,并表明我们能够获得(g^{(2)}(0)→1)的光,这与我们的理论相符,而这只能由至少3个光子的量子干涉来解释。然而,所产生的人工光态比相干态要复杂得多,包含光子的量子纠缠,使其成为多光子纠缠的一种资源。