Yu Bo, Huang Aijian, Chen Dongjiang, Srinivas Katam, Zhang Xiaojuan, Wang Xinqiang, Wang Bin, Ma Fei, Liu Chunlin, Zhang Wanli, He Jiarui, Wang Zegao, Chen Yuanfu
School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
Small. 2021 Jun;17(23):e2100460. doi: 10.1002/smll.202100460. Epub 2021 Apr 23.
The slow redox kinetics during cycling process and the serious shuttle effect caused by the solubility of lithium polysulfides (LiPSs) dramatically hinder the practical application of Li-S batteries. Herein, a facile and scalable spray-drying strategy is presented to construct conductive polar Mo C quantum dots-decorated carbon nanotube (CNT) networks (MCN) as an efficient absorbent and electrocatalyst for Li-S batteries. The results reveal that the MCN/S electrode exhibits a high specific capacity of 1303.3 mAh g at 0.2 C, and ultrastable cycling stability with decay of 0.019% per cycle even at 1 C. Theoretical simulation uncovers that Mo C exhibits much stronger binding energies for S and Li S . The energy barrier for the conversion between Li S and Li S decreases from 1.02 to 0.72 eV when hybriding with Mo C. Furthermore, in situ discharge/charge-dependent Raman spectroscopy shows that long-chain Li S configuration is generated via S ring opening near the first plateaus at ≈2.36 V versus Li/Li and the S configuration in CNT/S electrode is maintained below the potential of ≈2.30 V versus Li/Li , indicating that the shuttle of soluble LiPSs happens during the whole discharge process. This work provides deep insights into the polar nanoarchitecture design and scalable fabrication for advanced Li-S batteries.
循环过程中缓慢的氧化还原动力学以及多硫化锂(LiPSs)的溶解性所导致的严重穿梭效应极大地阻碍了锂硫电池的实际应用。在此,我们提出了一种简便且可扩展的喷雾干燥策略,以构建导电极性碳化钼(Mo C)量子点修饰的碳纳米管(CNT)网络(MCN),作为锂硫电池的高效吸收剂和电催化剂。结果表明,MCN/S电极在0.2 C时展现出1303.3 mAh g的高比容量,即使在1 C时也具有超稳定的循环稳定性,每循环衰减仅0.019%。理论模拟表明,Mo C对S和Li S具有更强的结合能。与Mo C复合时,Li S和Li S之间转化的能垒从1.02 eV降至0.72 eV。此外,原位充放电依赖的拉曼光谱表明,在相对于Li/Li约2.36 V的第一个平台附近,通过S开环生成了长链Li S构型,并且在相对于Li/Li约2.30 V的电位以下,CNT/S电极中的S 构型得以保持,这表明可溶性LiPSs的穿梭在整个放电过程中都会发生。这项工作为先进锂硫电池的极性纳米结构设计和可扩展制造提供了深刻见解。