Suppr超能文献

机械敏感组织中的质膜破坏(PMD)形成和修复。

Plasma membrane disruption (PMD) formation and repair in mechanosensitive tissues.

机构信息

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA.

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.

出版信息

Bone. 2021 Aug;149:115970. doi: 10.1016/j.bone.2021.115970. Epub 2021 Apr 21.

Abstract

Mammalian cells employ an array of biological mechanisms to detect and respond to mechanical loading in their environment. One such mechanism is the formation of plasma membrane disruptions (PMD), which foster a molecular flux across cell membranes that promotes tissue adaptation. Repair of PMD through an orchestrated activity of molecular machinery is critical for cell survival, and the rate of PMD repair can affect downstream cellular signaling. PMD have been observed to influence the mechanical behavior of skin, alveolar, and gut epithelial cells, aortic endothelial cells, corneal keratocytes and epithelial cells, cardiac and skeletal muscle myocytes, neurons, and most recently, bone cells including osteoblasts, periodontal ligament cells, and osteocytes. PMD are therefore positioned to affect the physiological behavior of a wide range of vertebrate organ systems including skeletal and cardiac muscle, skin, eyes, the gastrointestinal tract, the vasculature, the respiratory system, and the skeleton. The purpose of this review is to describe the processes of PMD formation and repair across these mechanosensitive tissues, with a particular emphasis on comparing and contrasting repair mechanisms and downstream signaling to better understand the role of PMD in skeletal mechanobiology. The implications of PMD-related mechanisms for disease and potential therapeutic applications are also explored.

摘要

哺乳动物细胞利用一系列生物机制来检测和响应其环境中的机械加载。其中一种机制是形成质膜破坏(PMD),这促进了跨细胞膜的分子通量,从而促进组织适应。通过分子机械的协调活动修复 PMD 对于细胞存活至关重要,而 PMD 的修复速度会影响下游细胞信号转导。已经观察到 PMD 影响皮肤、肺泡和肠道上皮细胞、主动脉内皮细胞、角膜成纤维细胞和上皮细胞、心脏和骨骼肌肌细胞、神经元以及最近的骨细胞(包括成骨细胞、牙周韧带细胞和骨细胞)的机械行为。因此,PMD 有可能影响包括骨骼和心肌、皮肤、眼睛、胃肠道、血管系统、呼吸系统和骨骼在内的广泛脊椎动物器官系统的生理行为。本综述的目的是描述这些机械敏感组织中 PMD 的形成和修复过程,特别强调比较和对比修复机制和下游信号转导,以更好地理解 PMD 在骨骼机械生物学中的作用。还探讨了与 PMD 相关的机制在疾病和潜在治疗应用中的意义。

相似文献

1
Plasma membrane disruption (PMD) formation and repair in mechanosensitive tissues.
Bone. 2021 Aug;149:115970. doi: 10.1016/j.bone.2021.115970. Epub 2021 Apr 21.
2
Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone.
J Orthop Res. 2018 Feb;36(2):653-662. doi: 10.1002/jor.23665. Epub 2017 Aug 11.
3
Prkd1 regulates the formation and repair of plasma membrane disruptions (PMD) in osteocytes.
Bone. 2024 Sep;186:117147. doi: 10.1016/j.bone.2024.117147. Epub 2024 Jun 10.
5
Inhibition of Osteocyte Membrane Repair Activity via Dietary Vitamin E Deprivation Impairs Osteocyte Survival.
Calcif Tissue Int. 2019 Feb;104(2):224-234. doi: 10.1007/s00223-018-0487-0. Epub 2018 Oct 24.
7
Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system.
Bone. 2020 Aug;137:115328. doi: 10.1016/j.bone.2020.115328. Epub 2020 Mar 20.
9
Osteocyte calcium signaling - A potential translator of mechanical load to mechanobiology.
Bone. 2021 Dec;153:116136. doi: 10.1016/j.bone.2021.116136. Epub 2021 Jul 30.
10
Mechanosensation and transduction in osteocytes.
Bone. 2013 Jun;54(2):182-90. doi: 10.1016/j.bone.2012.10.013. Epub 2012 Oct 18.

引用本文的文献

1
Microwave-sonication synergistic extraction of dairy waste proteins: A review of green approach for dairy waste proteins valorization.
Ultrason Sonochem. 2024 Dec;111:107111. doi: 10.1016/j.ultsonch.2024.107111. Epub 2024 Oct 16.
3
Prkd1 regulates the formation and repair of plasma membrane disruptions (PMD) in osteocytes.
Bone. 2024 Sep;186:117147. doi: 10.1016/j.bone.2024.117147. Epub 2024 Jun 10.
4
Transient plasma membrane disruption induced calcium waves in mouse and human corneal epithelial cells.
PLoS One. 2024 Apr 17;19(4):e0301495. doi: 10.1371/journal.pone.0301495. eCollection 2024.
5
Squishy matters - Corneal mechanobiology in health and disease.
Prog Retin Eye Res. 2024 Mar;99:101234. doi: 10.1016/j.preteyeres.2023.101234. Epub 2024 Jan 2.

本文引用的文献

1
Defective membrane repair machinery impairs survival of invasive cancer cells.
Sci Rep. 2020 Dec 11;10(1):21821. doi: 10.1038/s41598-020-77902-5.
2
Neuronal Plasma Membrane Integrity is Transiently Disturbed by Traumatic Loading.
Neurosci Insights. 2020 Jul 27;15:2633105520946090. doi: 10.1177/2633105520946090. eCollection 2020.
3
In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction.
Prog Biophys Mol Biol. 2021 Jan;159:22-33. doi: 10.1016/j.pbiomolbio.2020.07.003. Epub 2020 Aug 5.
5
TRIM72 promotes alveolar epithelial cell membrane repair and ameliorates lung fibrosis.
Respir Res. 2020 May 29;21(1):132. doi: 10.1186/s12931-020-01384-2.
6
Connexin 43 Channels in Osteocytes Regulate Bone Responses to Mechanical Unloading.
Front Physiol. 2020 Mar 31;11:299. doi: 10.3389/fphys.2020.00299. eCollection 2020.
7
Transient Cell Membrane Disruptions induce Calcium Waves in Corneal Keratocytes.
Sci Rep. 2020 Feb 18;10(1):2840. doi: 10.1038/s41598-020-59570-7.
8
Annexin-V stabilizes membrane defects by inducing lipid phase transition.
Nat Commun. 2020 Jan 13;11(1):230. doi: 10.1038/s41467-019-14045-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验