Suppr超能文献

理论有助于实验揭示人体呼吸中的挥发性有机化合物。

Theory helps experiment to reveal VOCs in human breath.

机构信息

School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China.

B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220072, Belarus.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2021 Sep 5;258:119785. doi: 10.1016/j.saa.2021.119785. Epub 2021 Apr 9.

Abstract

Volatile organic compounds (VOCs) present in human breath not only provide information about the internal chemistry of the body but can also be specific to diseases. Therefore, detection and analysis of specific VOCs can be used for medical diagnostics. However, up until today in spite of several existing VOC-based detection techniques and significant efforts, breath analysis is not a diagnostic method available for clinicians. Infrared absorption spectroscopy is a promising technique to fill this gap, with tens of identified VOCs in breath. Currently, a lack of digital spectral databases and several masking effects make difficult reliable molecular identification of observed absorption features. We demonstrate that calculations of rotational bands of vibrational spectra could serve as a basic method for molecular identification of spectral features observed in experiment. Results of comparison of several known VOCs spectra with the predictions of the theoretical model are presented.

摘要

人体呼吸中存在的挥发性有机化合物(VOCs)不仅提供了有关体内化学物质的信息,而且还可以针对特定疾病。因此,检测和分析特定的 VOCs 可用于医学诊断。但是,尽管存在几种基于 VOC 的检测技术,并且付出了巨大的努力,呼吸分析仍然不是临床医生可使用的诊断方法。红外吸收光谱学是填补这一空白的一种很有前途的技术,呼吸中有数十种已识别的 VOCs。目前,缺乏数字化光谱数据库和多种掩蔽效应使得难以可靠地识别观察到的吸收特征的分子。我们证明,振动光谱的旋转带计算可以作为实验中观察到的光谱特征的分子识别的基本方法。给出了几种已知 VOCs 光谱与理论模型预测的比较结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验