Suppr超能文献

眼前节的基因治疗。

Gene Therapy in the Anterior Eye Segment.

机构信息

Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars- Sinai Medical Center, Los Angeles, CA, USA.

Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel.

出版信息

Curr Gene Ther. 2022;22(2):104-131. doi: 10.2174/1566523221666210423084233.

Abstract

This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye, including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems, including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments, including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.

摘要

这篇综述提供了关于眼部前段(包括角膜、结膜、泪腺和小梁网)基因治疗进展的全面信息。我们讨论了基因传递系统,包括病毒和非病毒载体以及基因编辑技术,主要是 CRISPR-Cas9,和表观遗传治疗,包括反义寡核苷酸和 siRNA 治疗。我们还详细分析了各种前段疾病,其中基因治疗已在相应的结果中进行了测试。疾病情况包括角膜和结膜纤维化和瘢痕形成、角膜上皮伤口愈合、角膜移植物存活、角膜新生血管形成、遗传性角膜营养不良、疱疹性角膜炎、青光眼、干眼症和其他眼表面疾病。尽管在眼表面使用基因治疗的大多数分析结果都是在体外或使用动物模型获得的,但我们也讨论了现有的人体研究。基因治疗方法目前被认为是非常有前途的新兴未来治疗各种疾病的方法,并且该领域正在迅速发展。

相似文献

1
Gene Therapy in the Anterior Eye Segment.
Curr Gene Ther. 2022;22(2):104-131. doi: 10.2174/1566523221666210423084233.
2
Limbal stem cell transplantation: an evidence-based analysis.
Ont Health Technol Assess Ser. 2008;8(7):1-58. Epub 2008 Oct 1.
3
Targeting corneal inflammation by gene therapy: Emerging strategies for keratitis.
Exp Eye Res. 2018 Nov;176:130-140. doi: 10.1016/j.exer.2018.07.006. Epub 2018 Jul 4.
4
Personalised genome editing - The future for corneal dystrophies.
Prog Retin Eye Res. 2018 Jul;65:147-165. doi: 10.1016/j.preteyeres.2018.01.004. Epub 2018 Jan 31.
5
Corneal gene therapy.
J Control Release. 2007 Dec 20;124(3):107-33. doi: 10.1016/j.jconrel.2007.05.041. Epub 2007 Jul 4.
6
New Frontier in the Management of Corneal Dystrophies: Basics, Development, and Challenges in Corneal Gene Therapy and Gene Editing.
Asia Pac J Ophthalmol (Phila). 2022;11(4):346-359. doi: 10.1097/APO.0000000000000443. Epub 2022 Aug 30.
7
The potential of viral vector-mediated gene transfer to prolong corneal allograft survival.
Curr Gene Ther. 2009 Feb;9(1):33-44. doi: 10.2174/156652309787354621.
8
Current status of gene delivery and gene therapy in lacrimal gland using viral vectors.
Adv Drug Deliv Rev. 2006 Nov 15;58(11):1243-57. doi: 10.1016/j.addr.2006.07.021. Epub 2006 Sep 15.
9
Gene therapy for corneal dystrophies and disease, where are we?
Curr Opin Ophthalmol. 2012 Jul;23(4):276-9. doi: 10.1097/ICU.0b013e3283541eb6.

引用本文的文献

1
Smart molecules in ophthalmology: Hydrogels as responsive systems for ophthalmic applications.
Smart Mol. 2024 Mar 15;2(1):e20230021. doi: 10.1002/smo.20230021. eCollection 2024 Mar.
4
Looking to the Future of Viral Vectors in Ocular Gene Therapy: Clinical Review.
Biomedicines. 2025 Feb 5;13(2):365. doi: 10.3390/biomedicines13020365.
5
Ocular Gene Therapy: An Overview of Viral Vectors, Immune Responses, and Future Directions.
Yale J Biol Med. 2024 Dec 19;97(4):491-503. doi: 10.59249/HWID7537. eCollection 2024 Dec.
6
Gene Therapy: Towards a New Era of Medicine.
AAPS PharmSciTech. 2024 Dec 19;26(1):17. doi: 10.1208/s12249-024-03010-6.
7
Gene therapy for glaucoma: Targeting key mechanisms.
Vision Res. 2024 Dec;225:108502. doi: 10.1016/j.visres.2024.108502. Epub 2024 Oct 18.
9
The Formation and Renewal of Photoreceptor Outer Segments.
Cells. 2024 Aug 15;13(16):1357. doi: 10.3390/cells13161357.
10
Suppressing Pro-Apoptotic Proteins by siRNA in Corneal Endothelial Cells Protects against Cell Death.
Biomedicines. 2024 Jun 27;12(7):1439. doi: 10.3390/biomedicines12071439.

本文引用的文献

1
Systemic diseases and the cornea.
Exp Eye Res. 2021 Mar;204:108455. doi: 10.1016/j.exer.2021.108455. Epub 2021 Jan 21.
3
Development of a Corneal Bioluminescence Mouse for Real-Time In Vivo Evaluation of Gene Therapies.
Transl Vis Sci Technol. 2020 Dec 29;9(13):44. doi: 10.1167/tvst.9.13.44. eCollection 2020 Dec.
4
Novel insights into gene therapy in the cornea.
Exp Eye Res. 2021 Jan;202:108361. doi: 10.1016/j.exer.2020.108361. Epub 2020 Nov 16.
5
Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review.
Exp Eye Res. 2021 Jan;202:108329. doi: 10.1016/j.exer.2020.108329. Epub 2020 Oct 23.
6
Novel nanopolymer RNA therapeutics normalize human diabetic corneal wound healing and epithelial stem cells.
Nanomedicine. 2021 Feb;32:102332. doi: 10.1016/j.nano.2020.102332. Epub 2020 Nov 10.
8
Trinucleotide Repeat-Targeting dCas9 as a Therapeutic Strategy for Fuchs' Endothelial Corneal Dystrophy.
Transl Vis Sci Technol. 2020 Aug 31;9(9):47. doi: 10.1167/tvst.9.9.47. eCollection 2020 Aug.
9
Adeno-Associated Virus Mediated Gene Therapy for Corneal Diseases.
Pharmaceutics. 2020 Aug 13;12(8):767. doi: 10.3390/pharmaceutics12080767.
10
Polymer nanomedicines.
Adv Drug Deliv Rev. 2020;156:40-64. doi: 10.1016/j.addr.2020.07.020. Epub 2020 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验