Suppr超能文献

使用鼠脑的真实毛细血管网络模拟体素内不相干灌注信号。

Simulation of intravoxel incoherent perfusion signal using a realistic capillary network of a mouse brain.

机构信息

University Hospital Zürich, Zürich, Switzerland.

Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland.

出版信息

NMR Biomed. 2021 Jul;34(7):e4528. doi: 10.1002/nbm.4528. Epub 2021 Apr 26.

Abstract

PURPOSE

To simulate the intravoxel incoherent perfusion magnetic resonance magnitude signal from the motion of blood particles in three realistic vascular network graphs from a mouse brain.

METHODS

In three networks generated from the cortex of a mouse scanned by two-photon laser microscopy, blood flow in each vessel was simulated using Poiseuille's law. The trajectories, flow speeds and phases acquired by a fixed number of simulated blood particles during a Stejskal-Tanner bipolar pulse gradient scheme were computed. The resulting magnitude signal was obtained by integrating all phases and the pseudo-diffusion coefficient D* was estimated by fitting an exponential signal decay. To better understand the anatomical source of the intravoxel incoherent motion (IVIM) perfusion signal, the above was repeated restricting the simulation to various types of vessel.

RESULTS

The characteristics of the three microvascular networks were respectively vessel lengths (mean ± std. dev.) 67.2 ± 53.6 μm, 59.8 ± 46.2 μm and 64.5 ± 50.9 μm, diameters 6.0 ± 3.5 μm, 5.7 ± 3.6 μm and 6.1 ± 3.7 μm and simulated blood velocity 0.9 ± 1.7 μm/ms, 1.4 ± 2.5 μm/ms and 0.7 ± 2.1 μm/ms. Exponential fitting of the simulated signal decay as a function of b-value resulted in the following D*-values [10 mm /s]: 31.7, 40.4 and 33.4. The signal decay for low b-values was the largest in the larger vessels, but the smaller vessels and the capillaries accounted for more of the total volume of the networks.

CONCLUSION

This simulation improves the theoretical understanding of the IVIM perfusion estimation method by directly linking the MR IVIM perfusion signal to an ultra-high resolution measurement of the microvascular network and a realistic blood flow simulation.

摘要

目的

从老鼠大脑的三个现实血管网络图中模拟血液粒子运动的体素内不相干灌注磁共振幅度信号。

方法

在通过双光子激光显微镜扫描的老鼠皮层生成的三个网络中,使用泊肃叶定律模拟每个血管中的血流。通过 Stejskal-Tanner 双极脉冲梯度方案获取固定数量的模拟血液粒子在每个血管中的轨迹、流速和相位。通过整合所有相位获得幅度信号,并通过拟合指数信号衰减来估计伪扩散系数 D*。为了更好地理解体素内不相干运动 (IVIM) 灌注信号的解剖来源,将上述模拟限制在各种类型的血管中进行。

结果

三个微血管网络的特征分别为血管长度(平均值 ± 标准差)67.2 ± 53.6 μm、59.8 ± 46.2 μm 和 64.5 ± 50.9 μm、直径 6.0 ± 3.5 μm、5.7 ± 3.6 μm 和 6.1 ± 3.7 μm 和模拟血液速度 0.9 ± 1.7 μm/ms、1.4 ± 2.5 μm/ms 和 0.7 ± 2.1 μm/ms。模拟信号衰减作为 b 值函数的指数拟合导致以下 D*-值 [10 mm/s]:31.7、40.4 和 33.4。低 b 值下的信号衰减在较大的血管中最大,但较小的血管和毛细血管占网络总体积的比例更大。

结论

通过将 MR IVIM 灌注估计方法的直接与超分辨率微血管网络测量和现实血流模拟相关联,本模拟提高了对 IVIM 灌注估计方法的理论理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验