Suppr超能文献

将泡沫镍重塑为NiF纳米棒阵列:一种用于析氢反应应用的水热法。

Recasting Ni-foam into NiF nanorod arrays a hydrothermal process for hydrogen evolution reaction application.

作者信息

Shinde Nanasaheb M, Raut Siddheshwar D, Ghule Balaji G, Gunturu Krishna Chaitanya, Pak James J, Mane Rajaram S

机构信息

School of Electrical and Engineering, Korea University, Seoul, 02841, Republic of Korea.

School of Physical Sciences, S. R. T. M. University, Nanded-431501, MS, India.

出版信息

Dalton Trans. 2021 May 18;50(19):6500-6505. doi: 10.1039/d1dt00654a.

Abstract

A promising electrode for hydrogen evolution reaction (HER) has been prepared via a reduction process to form NiF2 nanorod arrays directly grown on a 3D nickel foam. We reveal NiF2@Ni nanorod arrays for a stable hydrogen evolution reaction (HER) application. The computational analysis for H2O, OH and H and experimentally in aqueous KOH endow considerable shift in Fermi levels for Ni (111) unlike for NiF2 (110) on account of an effective coalition of p-orbitals of fluorine and d-orbitals of Ni in NiF2, NiF2 under pinning the reduced overpotential of 172 mV at 10 mA cm-2 compared to Ni (242 mV) in same electrolyte. The electrocatalytic mechanism has been proposed using density functional theory (DFT) and is found in well accordance with the experimental findings of the present study. The preparation of self-grown porous nanostructured electrodes on the 3D nickel foam via a displacement reaction is possibly valuable for other metal halides for energy storage and conversion applications as these materials have inherently smaller overpotentials.

摘要

通过还原过程制备了一种用于析氢反应(HER)的有前景的电极,该电极由直接生长在三维泡沫镍上的NiF₂纳米棒阵列构成。我们展示了用于稳定析氢反应(HER)应用的NiF₂@Ni纳米棒阵列。对H₂O、OH和H的计算分析以及在氢氧化钾水溶液中的实验表明,由于NiF₂中氟的p轨道与Ni的d轨道有效结合,Ni(111)的费米能级与NiF₂(110)相比有相当大的偏移,在相同电解质中,NiF₂在10 mA cm⁻²时的过电位降低了172 mV,而Ni为242 mV。利用密度泛函理论(DFT)提出了电催化机理,发现与本研究的实验结果非常吻合。通过置换反应在三维泡沫镍上制备自生长的多孔纳米结构电极,对于其他用于能量存储和转换应用的金属卤化物可能具有重要价值,因为这些材料本身具有较小的过电位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验