James Franck Institute, Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL, USA.
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, China.
Nature. 2021 Apr;592(7856):708-711. doi: 10.1038/s41586-021-03443-0. Epub 2021 Apr 28.
Molecular quantum gases (that is, ultracold and dense molecular gases) have many potential applications, including quantum control of chemical reactions, precision measurements, quantum simulation and quantum information processing. For molecules, to reach the quantum regime usually requires efficient cooling at high densities, which is frequently hindered by fast inelastic collisions that heat and deplete the population of molecules. Here we report the preparation of two-dimensional Bose-Einstein condensates (BECs) of spinning molecules by inducing pairing interactions in an atomic condensate near a g-wave Feshbach resonance. The trap geometry and the low temperature of the molecules help to reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state measurement, we determine the molecular scattering length to be + 220(±30) Bohr radii (95% confidence interval). We also investigate the unpairing dynamics in the strong coupling regime and find that near the Feshbach resonance the dynamical timescale is consistent with the unitarity limit. Our work demonstrates the long-sought transition between atomic and molecular condensates, the bosonic analogue of the crossover from a BEC to a Bardeen-Cooper-Schrieffer (BCS) superfluid in a Fermi gas. In addition, our experiment may shed light on condensed pairs with orbital angular momentum, where a novel anisotropic superfluid with non-zero surface current is predicted, such as the A phase of He.
分子量子气体(即超冷和高密度的分子气体)具有许多潜在的应用,包括化学反应的量子控制、精密测量、量子模拟和量子信息处理。对于分子来说,要达到量子态通常需要在高密度下进行有效的冷却,但这通常会受到快速非弹性碰撞的阻碍,这些碰撞会使分子升温并耗尽分子的数量。在这里,我们通过在原子凝聚体中诱导配对相互作用,在接近 g 波 Feshbach 共振的情况下,制备了二维玻色-爱因斯坦凝聚体(BEC)。陷阱的几何形状和分子的低温有助于减少非弹性损耗,确保热平衡。从状态方程的测量中,我们确定分子散射长度为 + 220(±30) 玻尔半径(95%置信区间)。我们还研究了强耦合区的非配对动力学,发现靠近 Feshbach 共振时,动力学时间尺度与幺正极限一致。我们的工作证明了原子和分子凝聚体之间长期以来一直寻求的转变,这是费米气体中从 BEC 到 Bardeen-Cooper-Schrieffer(BCS)超流的转变的玻色子类似物。此外,我们的实验可能会揭示具有轨道角动量的凝聚对,其中预测了具有非零表面电流的新型各向异性超流,例如 He 的 A 相。