Correia J J, Beth A H, Williams R C
Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235.
J Biol Chem. 1988 Aug 5;263(22):10681-6.
The tubulin heterodimer binds a molecule of GTP at the nonexchangeable nucleotide-binding site (N-site) and either GDP or GTP at the exchangeable nucleotide-binding site (E-site). Mg2+ is known to be tightly linked to the binding of GTP at the E-site (Correia, J. J., Baty, L. T., and Williams, R. C., Jr. (1987) J. Biol. Chem. 262, 17278-17284). Measurements of the exchange of Mn2+ for bound Mg2+ (as monitored by atomic absorption and EPR) demonstrate that tubulin which has GDP at the E-site possesses one high affinity metal-binding site and that tubulin which has GTP at the E-site possesses two such sites. The apparent association constants are 0.7-1.1 x 10(6) M-1 for Mg2+ and approximately 4.1-4.9 x 10(7) M-1 for Mn2+. Divalent cations do bind to GDP at the E-site, but with much lower affinity (2.0-2.3 x 10(3) M-1 for Mg2+ and 3.9-6.6 x 10(3) M-1 for Mn2+). These data suggest that divalent cations are involved in GTP binding to both the N- and E-sites of tubulin. The N-site metal exchanges slowly (kapp = 0.020 min-1), suggesting a mechanism involving protein "breathing" or heterodimer dissociation. The N-site metal exchange rate is independent of the concentration of protein and metal, an observation consistent with the possibility that a dynamic breathing process is the rate-limiting step. The exchange of Mn2+ for Mg2+ has no effect on the secondary structure of tubulin at 4 degrees C or on the ability of tubulin to form microtubules. These results have important consequences for the interpretation of distance measurements within the tubulin dimer using paramagnetic ions. They are also relevant to the detailed mechanism of divalent cation release from microtubules after GTP hydrolysis.
微管蛋白异二聚体在不可交换的核苷酸结合位点(N位点)结合一分子GTP,并在可交换的核苷酸结合位点(E位点)结合GDP或GTP。已知Mg2+与E位点的GTP结合紧密相关(科雷亚,J. J.,巴蒂,L. T.,和小威廉姆斯,R. C.(1987年)《生物化学杂志》262,17278 - 17284)。对结合的Mg2+被Mn2+交换的测量(通过原子吸收和电子顺磁共振监测)表明,E位点有GDP的微管蛋白具有一个高亲和力金属结合位点,而E位点有GTP的微管蛋白具有两个这样的位点。Mg2+的表观缔合常数为0.7 - 1.1×10(6) M-1,Mn2+的表观缔合常数约为4.1 - 4.9×10(7) M-1。二价阳离子确实会在E位点与GDP结合,但亲和力低得多(Mg2+为2.0 - 2.3×10(3) M-1,Mn2+为3.9 - 6.6×10(3) M-1)。这些数据表明二价阳离子参与GTP与微管蛋白的N位点和E位点的结合。N位点的金属交换缓慢(kapp = 0.020分钟-1),表明其机制涉及蛋白质“呼吸”或异二聚体解离。N位点的金属交换速率与蛋白质和金属的浓度无关,这一观察结果与动态呼吸过程可能是限速步骤的可能性一致。在4℃下,Mn2+对Mg2+的交换对微管蛋白的二级结构或微管蛋白形成微管的能力没有影响。这些结果对于解释使用顺磁性离子在微管蛋白二聚体内进行距离测量具有重要意义。它们也与GTP水解后二价阳离子从微管中释放的详细机制相关。