Amero S A, Ogle R C, Keating J L, Montoya V L, Murdoch W L, Grainger R M
Department of Biology, University of Virginia, Charlottesville 22901.
J Biol Chem. 1988 Aug 5;263(22):10725-33.
We have undertaken the purification of ribosomal RNA gene (rDNA) chromatin from the slime mold Physarum polycephalum, in order to study its chromatin structure. In this organism rDNA exists in nucleoli as highly repeated minichromosomes, and one can obtain crude chromatin fractions highly enriched in rDNA from isolated nucleoli. We first developed a nucleolar isolation method utilizing polyamines as stabilization agents that results in a chromatin fraction containing far more protein than is obtained by the more commonly used divalent cation isolation methods. The latter method appears to result in extensive histone loss during chromatin isolations. Two methods were then used for purifying rDNA chromatin from nucleoli isolated by the polyamine procedure. We found that rDNA chromatin migrates as a single band in agarose gels, well separated from other components in the chromatin preparation. Although the utility of this technique is somewhat limited by low yields and by progressive stripping of protein from rDNA chromatin, it can provide useful information about rDNA chromatin protein composition. The application of this technique to the fractionation of gene and spacer chromatin fragments produced by restriction enzyme digestion is discussed. We also found that rDNA chromatin, if RNase-treated, bands discretely in metrizamide equilibrium density gradients with a density lighter than that of non-nucleolar chromatin. These characteristics suggest that we have identified a transcriptionally active rDNA chromatin fraction which possesses a lower protein to DNA ratio than does non-nucleolar chromatin. This technique yields sufficient purified rDNA chromatin for further biochemical studies and does not cause extensive protein stripping. The procedures developed here should be applicable to the analysis of a variety of chromatin fractions in other systems.
为了研究其染色质结构,我们已着手从多头绒泡菌中纯化核糖体RNA基因(rDNA)染色质。在这种生物体中,rDNA以高度重复的微型染色体形式存在于核仁中,并且可以从分离的核仁中获得高度富集rDNA的粗染色质组分。我们首先开发了一种利用多胺作为稳定剂的核仁分离方法,该方法产生的染色质组分所含蛋白质比更常用的二价阳离子分离方法所获得的要多得多。后一种方法似乎在染色质分离过程中导致大量组蛋白损失。然后使用两种方法从通过多胺程序分离的核仁中纯化rDNA染色质。我们发现rDNA染色质在琼脂糖凝胶中迁移时呈现为单一一条带,与染色质制备中的其他组分分离良好。尽管该技术的实用性在一定程度上受到产量低以及rDNA染色质上蛋白质逐渐剥离的限制,但它可以提供有关rDNA染色质蛋白质组成的有用信息。讨论了该技术在限制性内切酶消化产生的基因和间隔区染色质片段分级分离中的应用。我们还发现,如果用核糖核酸酶处理,rDNA染色质在Nycodenz平衡密度梯度中离散成带,其密度比非核仁染色质的密度轻。这些特征表明我们已经鉴定出一种转录活性的rDNA染色质组分,其蛋白质与DNA的比率低于非核仁染色质。该技术产生了足够用于进一步生化研究的纯化rDNA染色质,并且不会导致大量蛋白质剥离。这里开发的程序应该适用于分析其他系统中的各种染色质组分。