Suppr超能文献

基于新型深度域自适应方法的光学相干断层扫描图像跨域视网膜病变分类。

Cross-domain retinopathy classification with optical coherence tomography images via a novel deep domain adaptation method.

机构信息

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.

Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

出版信息

J Biophotonics. 2021 Aug;14(8):e202100096. doi: 10.1002/jbio.202100096. Epub 2021 May 11.

Abstract

Deep learning based retinopathy classification with optical coherence tomography (OCT) images has recently attracted great attention. However, existing deep learning methods fail to work well when training and testing datasets are different due to the general issue of domain shift between datasets caused by different collection devices, subjects, imaging parameters, etc. To address this practical and challenging issue, we propose a novel deep domain adaptation (DDA) method to train a model on a labeled dataset and adapt it to an unlabelled dataset (collected under different conditions). It consists of two modules for domain alignment, that is, adversarial learning and entropy minimization. We conduct extensive experiments on three public datasets to evaluate the performance of the proposed method. The results indicate that there are large domain shifts between datasets, resulting a poor performance for conventional deep learning methods. The proposed DDA method can significantly outperform existing methods for retinopathy classification with OCT images. It achieves retinopathy classification accuracies of 0.915, 0.959 and 0.990 under three cross-domain (cross-dataset) scenarios. Moreover, it obtains a comparable performance with human experts on a dataset where no labeled data in this dataset have been used to train the proposed DDA method. We have also visualized the learnt features by using the t-distributed stochastic neighbor embedding (t-SNE) technique. The results demonstrate that the proposed method can learn discriminative features for retinopathy classification.

摘要

基于深度学习的光学相干断层扫描(OCT)图像视网膜病变分类最近引起了极大的关注。然而,现有的深度学习方法在训练和测试数据集不同时效果不佳,这是由于数据集之间的域转移问题,这是由不同的采集设备、对象、成像参数等引起的。为了解决这个实际而具有挑战性的问题,我们提出了一种新的深度域自适应(DDA)方法,即在有标签的数据集上训练模型,并将其适应于无标签的数据集(在不同条件下采集)。它由两个用于域对齐的模块组成,即对抗学习和熵最小化。我们在三个公共数据集上进行了广泛的实验,以评估所提出方法的性能。结果表明,数据集之间存在较大的域转移,导致传统深度学习方法的性能较差。所提出的 DDA 方法在 OCT 图像的视网膜病变分类方面可以显著优于现有方法。它在三种跨域(跨数据集)场景下实现了 0.915、0.959 和 0.990 的视网膜病变分类准确率。此外,它在一个没有使用该数据集的标记数据来训练所提出的 DDA 方法的数据集上,与人类专家的表现相当。我们还使用 t 分布随机邻域嵌入(t-SNE)技术可视化了学习到的特征。结果表明,所提出的方法可以学习用于视网膜病变分类的有判别力的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验