Suppr超能文献

开发和验证一种用于检测电子问题列表中纵向不一致性的模型。

Developing and Validating a Model for Detecting Longitudinal Inconsistencies in the Electronic Problem List.

机构信息

University of Utah, Department of Biomedical Informatics, Salt Lake City, UT.

Intermountain Healthcare, Clinical Informatics, Salt Lake City, UT.

出版信息

AMIA Annu Symp Proc. 2021 Jan 25;2020:563-572. eCollection 2020.

Abstract

Clinicians from different care settings can distort the problem list from conveying a patient's actual health status, affecting quality and patient safety. To measure this effect, a reference standard was built to derive a problem-list based model. Real-world problem lists were used to derive an ideal categorization cutoff score. The model was tested against patient records to categorize problem lists as either having longitudinal inconsistencies or not. The model was able to successfully categorize these events with ~87% accuracy, ~83% sensitivity, and ~89% specificity. This new model can be used to quantify intervention effects, can be reported in problem list studies, and can be used to measure problem list changes based on policy, workflow, or system changes.

摘要

来自不同护理环境的临床医生可能会扭曲问题清单,无法准确反映患者的实际健康状况,从而影响医疗质量和患者安全。为了衡量这种影响,我们构建了一个参考标准,以便根据问题清单建立一个基于模型的诊断。我们使用真实世界的问题清单得出了一个理想的分类截断分数。我们使用该模型来测试患者记录,以将问题清单归类为是否存在纵向不一致。该模型能够以约 87%的准确率、约 83%的灵敏度和约 89%的特异性成功地对这些事件进行分类。这个新模型可以用于量化干预效果,可以在问题清单研究中报告,也可以用于根据政策、工作流程或系统变化来衡量问题清单的变化。

相似文献

本文引用的文献

5
Use of an electronic problem list by primary care providers and specialists.基层保健提供者和专家使用电子问题清单。
J Gen Intern Med. 2012 Aug;27(8):968-73. doi: 10.1007/s11606-012-2033-5. Epub 2012 Mar 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验