Lindsey Rebecca K, Bastea Sorin, Goldman Nir, Fried Laurence E
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
J Chem Phys. 2021 Apr 28;154(16):164115. doi: 10.1063/5.0047800.
We describe a machine learning approach to rapidly tune density functional tight binding models for the description of detonation chemistry in organic molecular materials. Resulting models enable simulations on the several 10s of ps scales characteristic to these processes, with "quantum-accuracy." We use this approach to investigate early shock chemistry in 3,4-bis(3-nitrofurazan-4-yl)furoxan, a hydrogen-free energetic material known to form onion-like nanocarbon particulates following detonation. We find that the ensuing chemistry is significantly characterized by the formation of large CNO species, which are likely precursors to the experimentally observed carbon condensates. Beyond utility as a means of investigating detonation chemistry, the present approach can be used to generate quantum-based reference data for the development of full machine-learned interatomic potentials capable of simulation on even greater time and length scales, i.e., for applications where characteristic time scales exceed the reach of methods including Kohn-Sham density functional theory, which are commonly used for reference data generation.
我们描述了一种机器学习方法,用于快速调整密度泛函紧束缚模型,以描述有机分子材料中的爆轰化学。所得模型能够以“量子精度”对这些过程特有的几十皮秒时间尺度进行模拟。我们使用这种方法研究了3,4-双(3-硝基呋咱-4-基)呋咱的早期冲击化学,这是一种无氢含能材料,已知在爆轰后会形成洋葱状纳米碳颗粒。我们发现,随后的化学反应显著特征是形成了大量的CNO物种,它们可能是实验观察到的碳凝聚物的前体。除了作为研究爆轰化学的一种手段外,本方法还可用于生成基于量子的参考数据,以开发能够在更大时间和长度尺度上进行模拟的全机器学习原子间势,即用于特征时间尺度超出包括Kohn-Sham密度泛函理论在内的常用参考数据生成方法范围的应用。