Suppr超能文献

肺和肾发育中偏倚的上皮管延长的生物力学基础。

The biomechanical basis of biased epithelial tube elongation in lung and kidney development.

机构信息

Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.

Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland.

出版信息

Development. 2021 May 1;148(9). doi: 10.1242/dev.194209. Epub 2021 May 4.

Abstract

During lung development, epithelial branches expand preferentially in a longitudinal direction. This bias in outgrowth has been linked to a bias in cell shape and in the cell division plane. How this bias arises is unknown. Here, we show that biased epithelial outgrowth occurs independent of the surrounding mesenchyme, of preferential turnover of the extracellular matrix at the bud tips and of FGF signalling. There is also no evidence for actin-rich filopodia at the bud tips. Rather, we find epithelial tubes to be collapsed during early lung and kidney development, and we observe fluid flow in the narrow tubes. By simulating the measured fluid flow inside segmented narrow epithelial tubes, we show that the shear stress levels on the apical surface are sufficient to explain the reported bias in cell shape and outgrowth. We use a cell-based vertex model to confirm that apical shear forces, unlike constricting forces, can give rise to both the observed bias in cell shapes and tube elongation. We conclude that shear stress may be a more general driver of biased tube elongation beyond its established role in angiogenesis. This article has an associated 'The people behind the papers' interview.

摘要

在肺发育过程中,上皮分支优先沿纵向方向扩展。这种生长的偏差与细胞形状和细胞分裂平面的偏差有关。这种偏差是如何产生的尚不清楚。在这里,我们表明,偏向性的上皮生长发生于周围间质之外,在芽尖处细胞外基质的优先周转以及 FGF 信号的影响之外。芽尖处也没有富含肌动蛋白的丝状伪足的证据。相反,我们发现肺和肾发育早期上皮管塌陷,并且我们观察到狭窄管内的流体流动。通过模拟分段狭窄上皮管内测量的流体流动,我们表明,在顶端表面上的剪切应力水平足以解释报告的细胞形状和生长的偏差。我们使用基于细胞的顶点模型来确认,与收缩力不同,顶端剪切力可以导致观察到的细胞形状和管伸长的偏差。我们得出结论,剪切应力可能是偏向性管伸长的更普遍驱动因素,而不仅仅是其在血管生成中的既定作用。本文有一个相关的“论文背后的人物”采访。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ea/8126414/97fc714a27af/develop-148-194209-g1.jpg

相似文献

1
The biomechanical basis of biased epithelial tube elongation in lung and kidney development.
Development. 2021 May 1;148(9). doi: 10.1242/dev.194209. Epub 2021 May 4.
2
Cell-based simulations of biased epithelial lung growth.
Phys Biol. 2019 Dec 13;17(1):016006. doi: 10.1088/1478-3975/ab5613.
4
The control of lung branching morphogenesis.
Curr Top Dev Biol. 2021;143:205-237. doi: 10.1016/bs.ctdb.2021.02.002. Epub 2021 Mar 23.
6
The role of spatially controlled cell proliferation in limb bud morphogenesis.
PLoS Biol. 2010 Jul 13;8(7):e1000420. doi: 10.1371/journal.pbio.1000420.
8
An archetypal mechanism for branching organogenesis.
Phys Biol. 2014 Feb;11(1):016003. doi: 10.1088/1478-3975/11/1/016003. Epub 2014 Jan 20.
9
Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.
Biomech Model Mechanobiol. 2016 Dec;15(6):1733-1746. doi: 10.1007/s10237-016-0794-1. Epub 2016 May 18.
10
Computational analysis of three-dimensional epithelial morphogenesis using vertex models.
Phys Biol. 2014 Nov 20;11(6):066007. doi: 10.1088/1478-3975/11/6/066007.

引用本文的文献

1
A model for maxilloturbinate morphogenesis in seals.
PLoS One. 2025 Mar 3;20(3):e0316669. doi: 10.1371/journal.pone.0316669. eCollection 2025.
3
A novel tubular model to recapitulate features of distal airways: the bronchioid.
Eur Respir J. 2024 Dec 5;64(6). doi: 10.1183/13993003.00562-2024. Print 2024 Dec.
4
Exploiting mechanisms for hierarchical branching structure of lung airway.
PLoS One. 2024 Aug 30;19(8):e0309464. doi: 10.1371/journal.pone.0309464. eCollection 2024.
6
Biomechanical Modelling of Porcine Kidney.
Bioengineering (Basel). 2024 May 24;11(6):537. doi: 10.3390/bioengineering11060537.
7
The Mechanics of Building Functional Organs.
Cold Spring Harb Perspect Biol. 2025 Mar 3;17(3):a041520. doi: 10.1101/cshperspect.a041520.
8
SimuCell3D: three-dimensional simulation of tissue mechanics with cell polarization.
Nat Comput Sci. 2024 Apr;4(4):299-309. doi: 10.1038/s43588-024-00620-9. Epub 2024 Apr 9.
9
Breaking the symmetry of cell contractility drives tubulogenesis via CXCL1 polarization.
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2315894121. doi: 10.1073/pnas.2315894121. Epub 2024 Feb 20.

本文引用的文献

1
The control of lung branching morphogenesis.
Curr Top Dev Biol. 2021;143:205-237. doi: 10.1016/bs.ctdb.2021.02.002. Epub 2021 Mar 23.
3
Cell-based simulations of biased epithelial lung growth.
Phys Biol. 2019 Dec 13;17(1):016006. doi: 10.1088/1478-3975/ab5613.
4
Smooth muscle differentiation shapes domain branches during mouse lung development.
Development. 2019 Nov 25;146(22):dev181172. doi: 10.1242/dev.181172.
5
Morphogenesis of the kidney and lung requires branch-tip directed activity of the Adamts18 metalloprotease.
Dev Biol. 2019 Oct 15;454(2):156-169. doi: 10.1016/j.ydbio.2019.06.012. Epub 2019 Jun 23.
8
Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.
Dev Cell. 2018 Feb 5;44(3):313-325.e5. doi: 10.1016/j.devcel.2017.12.013. Epub 2018 Jan 11.
9
Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development.
Development. 2017 Dec 1;144(23):4328-4335. doi: 10.1242/dev.154823. Epub 2017 Oct 30.
10
Corneal epithelial cells exposed to shear stress show altered cytoskeleton and migratory behaviour.
PLoS One. 2017 Jun 29;12(6):e0178981. doi: 10.1371/journal.pone.0178981. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验