Suppr超能文献

结直肠癌风险预测模型:评估因添加生物标志物而导致的区分度。

Risk prediction models for colorectal cancer: Evaluating the discrimination due to added biomarkers.

机构信息

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.

出版信息

Int J Cancer. 2021 Sep 1;149(5):1021-1030. doi: 10.1002/ijc.33621. Epub 2021 May 17.

Abstract

Most risk prediction models for colorectal cancer (CRC) are based on questionnaires and show a modest discriminatory ability. Therefore, we aim to develop risk prediction models incorporating plasma biomarkers for CRC to improve discrimination. We assessed the predictivity of 11 biomarkers in 736 men in the Health Professionals Follow-up Study and 639 women in the Nurses' Health Study. We used stepwise logistic regression to examine whether a set of biomarkers improved the predictivity on the basis of predictors in the National Cancer Institute's (NCI) Colorectal Cancer Risk Assessment Tool. Model discrimination was assessed using C-statistics. Bootstrap with 500 randomly sampled replicates was used for internal validation. The models containing each biomarker generated a C-statistic ranging from 0.50 to 0.59 in men and 0.50 to 0.54 in women. The NCI model demonstrated a C-statistic (95% CI) of 0.67 (0.62-0.71) in men and 0.58 (0.54-0.63) in women. Through stepwise selection of biomarkers, the C-statistic increased to 0.70 (0.66-0.74) in men after adding growth/differentiation factor 15, total adiponectin, sex hormone binding globulin and tumor necrosis factor receptor superfamily member 1B (P for difference = 0.008); and increased to 0.62 (0.57-0.66) in women after further including insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 (P for difference = .06). The NCI + selected biomarkers model was internally validated with a C-statistic (95% CI) of 0.73 (0.70-0.77) in men and 0.66 (0.61-0.70) in women. Circulating plasma biomarkers may improve the performance of risk factor-based prediction model for CRC.

摘要

大多数结直肠癌(CRC)风险预测模型都是基于问卷,其判别能力有限。因此,我们旨在开发纳入 CRC 血浆生物标志物的风险预测模型以提高判别能力。我们评估了 736 名男性健康专业人员随访研究和 639 名女性护士健康研究中的 11 种生物标志物的预测能力。我们使用逐步逻辑回归来检验一组生物标志物是否可以基于美国国立癌症研究所(NCI)结直肠癌风险评估工具中的预测因子来改善预测。使用 C 统计量评估模型判别能力。使用 500 个随机抽样重复的自举法进行内部验证。在男性中,包含每个生物标志物的模型生成的 C 统计量范围为 0.50 至 0.59,在女性中为 0.50 至 0.54。NCI 模型在男性中 C 统计量(95%CI)为 0.67(0.62-0.71),在女性中为 0.58(0.54-0.63)。通过逐步选择生物标志物,在男性中添加生长/分化因子 15、总脂联素、性激素结合球蛋白和肿瘤坏死因子受体超家族成员 1B 后,C 统计量增加至 0.70(0.66-0.74)(差异 P = 0.008);在女性中进一步包括胰岛素样生长因子 1 和胰岛素样生长因子结合蛋白 3 后,C 统计量增加至 0.62(0.57-0.66)(差异 P = 0.06)。NCI+选定生物标志物模型在男性中内部验证的 C 统计量(95%CI)为 0.73(0.70-0.77),在女性中为 0.66(0.61-0.70)。循环血浆生物标志物可能会提高基于风险因素的 CRC 预测模型的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验