Suppr超能文献

砷污染地下水微生物组与含水层沉积物之间复杂相互作用的地球化学、宏基因组学和生理学特征。

Geochemical, metagenomic, and physiological characterization of the multifaceted interaction between microbiome of an arsenic contaminated groundwater and aquifer sediment.

机构信息

Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.

Central Ground Water Board, Bhujalika, C.P Block-6, Sector-V, Bidhan Nagar, Kolkata 700091, West Bengal, India.

出版信息

J Hazard Mater. 2021 Jun 15;412:125099. doi: 10.1016/j.jhazmat.2021.125099. Epub 2021 Jan 11.

Abstract

Geomicrobiological details of the interactions between groundwater microbiome (GWM) and arsenic (As)-rich aquifer sediment of Bengal basin was investigated through microcosm incubations. Role of key microorganisms and their specific interactions with As-bearing minerals was demarcated under organic carbon- amended and -unamended conditions. Acinetobacter (50.8 %), Brevundimonas (7.9 %), Sideroxydans (3.4 %), Alkanindiges (3.0 %) dominated the GWM. The microbiome catalysed considerable alterations in As-bearing mineral [Fe-(hydr)oxide and aluminosilicate] phases resulting in substantial changes in overall geochemistry and release of As (65 μg/L) and Fe (118 μg/L). Synergistic roles of autotrophic, NH-oxidizing Archaea (Thaumarchaeota) and chemoheterotrophic bacteria (Stenotrophomonas, Pseudomonas, Geobacter) of diverse metabolic abilities (NH-oxidizing, NO, As/Fe-reducing) were noted for observed changes. Organic carbon supported enhanced microbial growth and As mobilization (upto 403.2 μg As/L) from multiple mineral phases (hematite, magnetite, maghemite, biotite, etc.). In presence of high organic carbon, concerted actions of anaerobic, hydrocarbon-utilizing, As-, Fe-reducing Rhizobium, fermentative Escherichia, anaerobic Bacillales, metal-reducing and organic acid-utilizing Pseudomonas and Achromobacter were implicated in altering sediment mineralogy and biogeochemistry. Increase in abundance of arrA, arsC, bssA genes, and dissolution of Fe, Ca, Mg, Mn confirmed that dissimilatory-, cytosolic-As reduction, and mineral weathering fuelled by anaerobic (hydro)carbon metabolism are the predominant mechanisms of As release in aquifers of Bengal basin.

摘要

通过微宇宙培养研究了孟加拉盆地地下水微生物组(GWM)与富含砷的含水层沉积物之间相互作用的地质微生物学细节。在添加和不添加有机碳的条件下,划定了关键微生物的作用及其与含砷矿物的特定相互作用。优势菌群为不动杆菌(50.8%)、短小芽孢杆菌(7.9%)、亚铁氧化菌(3.4%)和 Alkanindiges(3.0%)。微生物组使含砷矿物[铁(氢)氧化物和铝硅酸盐]相发生了可观的变化,导致整体地球化学发生了很大变化,并释放出了 65μg/L 的砷和 118μg/L 的铁。协同作用的自养氨氧化古菌(泉古菌门)和化能异养细菌(寡养单胞菌属、假单胞菌属、地杆菌属),它们具有多种代谢能力(氨氧化、亚硝酸盐、砷/铁还原),对观察到的变化起作用。有机碳支持微生物的生长和多种矿物相(赤铁矿、磁铁矿、磁赤铁矿、黑云母等)中的砷迁移(高达 403.2μg/L 的砷)。在高有机碳存在下,参与改变沉积物矿物学和生物地球化学的协同作用是厌氧、烃类利用、砷、铁还原的根瘤菌、发酵型的大肠杆菌、厌氧芽孢杆菌、金属还原和利用有机酸的假单胞菌和无色杆菌。arrA、arsC、bssA 基因的丰度增加,以及铁、钙、镁、锰的溶解,证实了异化、细胞质砷还原以及由厌氧(氢)碳代谢驱动的矿物风化是孟加拉盆地含水层中砷释放的主要机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验