Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
Central Ground Water Board, Bhujalika, C.P Block-6, Sector-V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
J Hazard Mater. 2021 Jun 15;412:125099. doi: 10.1016/j.jhazmat.2021.125099. Epub 2021 Jan 11.
Geomicrobiological details of the interactions between groundwater microbiome (GWM) and arsenic (As)-rich aquifer sediment of Bengal basin was investigated through microcosm incubations. Role of key microorganisms and their specific interactions with As-bearing minerals was demarcated under organic carbon- amended and -unamended conditions. Acinetobacter (50.8 %), Brevundimonas (7.9 %), Sideroxydans (3.4 %), Alkanindiges (3.0 %) dominated the GWM. The microbiome catalysed considerable alterations in As-bearing mineral [Fe-(hydr)oxide and aluminosilicate] phases resulting in substantial changes in overall geochemistry and release of As (65 μg/L) and Fe (118 μg/L). Synergistic roles of autotrophic, NH-oxidizing Archaea (Thaumarchaeota) and chemoheterotrophic bacteria (Stenotrophomonas, Pseudomonas, Geobacter) of diverse metabolic abilities (NH-oxidizing, NO, As/Fe-reducing) were noted for observed changes. Organic carbon supported enhanced microbial growth and As mobilization (upto 403.2 μg As/L) from multiple mineral phases (hematite, magnetite, maghemite, biotite, etc.). In presence of high organic carbon, concerted actions of anaerobic, hydrocarbon-utilizing, As-, Fe-reducing Rhizobium, fermentative Escherichia, anaerobic Bacillales, metal-reducing and organic acid-utilizing Pseudomonas and Achromobacter were implicated in altering sediment mineralogy and biogeochemistry. Increase in abundance of arrA, arsC, bssA genes, and dissolution of Fe, Ca, Mg, Mn confirmed that dissimilatory-, cytosolic-As reduction, and mineral weathering fuelled by anaerobic (hydro)carbon metabolism are the predominant mechanisms of As release in aquifers of Bengal basin.
通过微宇宙培养研究了孟加拉盆地地下水微生物组(GWM)与富含砷的含水层沉积物之间相互作用的地质微生物学细节。在添加和不添加有机碳的条件下,划定了关键微生物的作用及其与含砷矿物的特定相互作用。优势菌群为不动杆菌(50.8%)、短小芽孢杆菌(7.9%)、亚铁氧化菌(3.4%)和 Alkanindiges(3.0%)。微生物组使含砷矿物[铁(氢)氧化物和铝硅酸盐]相发生了可观的变化,导致整体地球化学发生了很大变化,并释放出了 65μg/L 的砷和 118μg/L 的铁。协同作用的自养氨氧化古菌(泉古菌门)和化能异养细菌(寡养单胞菌属、假单胞菌属、地杆菌属),它们具有多种代谢能力(氨氧化、亚硝酸盐、砷/铁还原),对观察到的变化起作用。有机碳支持微生物的生长和多种矿物相(赤铁矿、磁铁矿、磁赤铁矿、黑云母等)中的砷迁移(高达 403.2μg/L 的砷)。在高有机碳存在下,参与改变沉积物矿物学和生物地球化学的协同作用是厌氧、烃类利用、砷、铁还原的根瘤菌、发酵型的大肠杆菌、厌氧芽孢杆菌、金属还原和利用有机酸的假单胞菌和无色杆菌。arrA、arsC、bssA 基因的丰度增加,以及铁、钙、镁、锰的溶解,证实了异化、细胞质砷还原以及由厌氧(氢)碳代谢驱动的矿物风化是孟加拉盆地含水层中砷释放的主要机制。