Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada.
J Clin Pathol. 2021 Jul;74(7):462-468. doi: 10.1136/jclinpath-2021-207524. Epub 2021 May 5.
The objective of this study was to develop and validate an open-source digital pathology tool, QuPath, to automatically quantify CD138-positive bone marrow plasma cells (BMPCs).
We analysed CD138-scanned slides in QuPath. In the initial training phase, manual positive and negative cell counts were performed in representative areas of 10 bone marrow biopsies. Values from the manual counts were used to fine-tune parameters to detect BMPCs, using the positive cell detection and neural network (NN) classifier functions. In the testing phase, whole-slide images in an additional 40 cases were analysed. Output from the NN classifier was compared with two pathologist's estimates of BMPC percentage.
The training set included manual counts ranging from 2403 to 17 287 cells per slide, with a median BMPC percentage of 13% (range: 3.1%-80.7%). In the testing phase, the quantification of plasma cells by image analysis correlated well with manual counting, particularly when restricted to BMPC percentages of <30% (Pearson's r=0.96, p<0.001). Concordance between the NN classifier and the pathologist whole-slide estimates was similarly good, with an intraclass correlation of 0.83 and a weighted kappa for the NN classifier of 0.80 with the first rater and 0.90 with the second rater. This was similar to the weighted kappa between the two human raters (0.81).
This represents a validated digital pathology tool to assist in automatically and reliably counting BMPC percentage on CD138-stained slides with an acceptable error rate.
本研究旨在开发和验证一个开源数字病理学工具 QuPath,以自动定量 CD138 阳性骨髓浆细胞(BMPC)。
我们在 QuPath 中分析了 CD138 扫描载玻片。在初始训练阶段,在 10 例骨髓活检的代表性区域中手动进行阳性和阴性细胞计数。使用手动计数的值来微调参数,以使用阳性细胞检测和神经网络(NN)分类器功能检测 BMPC。在测试阶段,分析了另外 40 例全切片图像。NN 分类器的输出与两位病理学家估计的 BMPC 百分比进行了比较。
训练集包括每张载玻片手动计数范围为 2403 至 17287 个细胞,中位数 BMPC 百分比为 13%(范围:3.1%至 80.7%)。在测试阶段,通过图像分析对浆细胞的定量与手动计数相关性良好,特别是当限制在 BMPC 百分比<30%时(Pearson r=0.96,p<0.001)。NN 分类器与病理学家全切片估计值之间的一致性也很好,与第一位评估者的组内相关系数为 0.83,与 NN 分类器的加权 Kappa 值为 0.80,与第二位评估者的加权 Kappa 值为 0.90,与两位人类评估者之间的加权 Kappa 值(0.81)相似。
这代表了一种经过验证的数字病理学工具,可用于协助在 CD138 染色载玻片上自动且可靠地计数 BMPC 百分比,误差率可接受。