Suppr超能文献

显示出强大的适应能力,在嵌合 中取代 P1-HCPro。

P1 of Shows Strong Adaptation Capacity, Replacing P1-HCPro in a Chimeric .

机构信息

Centro Nacional de Biotecnología CNB, CSIC, Madrid, Spain.

出版信息

J Virol. 2021 Jun 24;95(14):e0015021. doi: 10.1128/JVI.00150-21.

Abstract

is the largest family of plant RNA viruses. Their genomes are expressed through long polyproteins that are usually headed by the leader endopeptidase P1. This protein can be classified as type A or type B based on host proteolytic requirements and RNA silencing suppression (RSS) capacity. The main genus is , and a group of potyviruses infecting sweet potato presents an enlarged P1 protein with a polymerase slippage motif that produces an extra product termed P1N-PISPO. These two proteins display some RSS activity and are expressed followed by HCPro, which appears to be the main RNA silencing suppressor in these viruses. Here, we studied the behavior of the P1 protein of (SPFMV) using a viral system based on a canonical potyvirus, (PPV), and discovered that this protein is able to replace both PPV P1 and HCPro. We also found that P1N-PISPO, produced after polymerase slippage, provides extra RNA silencing suppression capacity to SPFMV P1 in this viral context. In addition, the results showed that presence of two type A P1 proteins was detrimental for viral viability. The ample recombination spectrum that we found in the recovered viruses supports the strong adaptation capacity of P1 proteins and signals the N-terminal part of SPFMV P1 as essential for RSS activity. Further analyses provided data to add extra layers to the evolutionary history of sweet potato-infecting potyvirids. Plant viruses represent a major challenge for agriculture worldwide and , being the largest family of plant RNA viruses, is one of the primary players. P1, the leader endopeptidase, is a multifunctional protein that contributes to the successful spread of these viruses over a wide host range. Understanding how P1 proteins work, their dynamic interplay during viral infection, and their evolutionary path is critical for the development of strategic tools to fight the multiple diseases these viruses cause. We focused our efforts on the P1 protein of , which is coresponsible for the most devastating disease in sweet potato. The significance of our research is in understanding the capacity of this protein to perform several independent functions, using this knowledge to learn more about P1 proteins in general and the potyvirids infecting this host.

摘要

是植物 RNA 病毒中最大的家族。它们的基因组通过长多蛋白表达,这些多蛋白通常由头部内切蛋白酶 P1 领导。根据宿主蛋白水解的要求和 RNA 沉默抑制(RSS)能力,这种蛋白可分为 A 型或 B 型。主要属是 ,侵染甘薯的一类 Potyviruses 具有一个扩大的 P1 蛋白,其中包含一个聚合酶滑移基序,产生一个额外的产物,称为 P1N-PISPO。这两种蛋白具有一定的 RSS 活性,并且在 HCPro 之后表达,HCPro 似乎是这些病毒中主要的 RNA 沉默抑制剂。在这里,我们使用基于典型 Potyvirus (PPV)的病毒系统研究了 (SPFMV)的 P1 蛋白的行为,并发现该蛋白能够替代 PPV P1 和 HCPro。我们还发现,聚合酶滑移后产生的 P1N-PISPO 为 SPFMV P1 在这种病毒环境中提供了额外的 RNA 沉默抑制能力。此外,结果表明,存在两种 A 型 P1 蛋白对病毒的生存力有害。我们在回收的病毒中发现的广泛重组谱支持了 P1 蛋白的强大适应性,并表明 SPFMV P1 的 N 端部分对 RSS 活性至关重要。进一步的分析提供了数据,为甘薯侵染 Potyvirids 的进化史增加了额外的层次。植物病毒是全球农业的主要挑战,而 是植物 RNA 病毒中最大的家族,是主要参与者之一。P1,即头部内切蛋白酶,是一种多功能蛋白,有助于这些病毒在广泛的宿主范围内成功传播。了解 P1 蛋白的工作原理、它们在病毒感染过程中的动态相互作用以及它们的进化路径对于开发战略工具来对抗这些病毒引起的多种疾病至关重要。我们将精力集中在 ,这是甘薯中最具破坏性疾病的共同责任人。我们研究的意义在于理解该蛋白执行多个独立功能的能力,利用这些知识了解更多关于 P1 蛋白的一般信息,以及感染该宿主的 Potyvirids。

相似文献

1
P1 of Shows Strong Adaptation Capacity, Replacing P1-HCPro in a Chimeric .
J Virol. 2021 Jun 24;95(14):e0015021. doi: 10.1128/JVI.00150-21.
4
Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection.
J Gen Virol. 2012 Jul;93(Pt 7):1601-1611. doi: 10.1099/vir.0.042168-0. Epub 2012 Apr 18.
5
Elimination of antiviral defense by viral RNase III.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10354-8. doi: 10.1073/pnas.0806042106. Epub 2009 Jun 10.
8
Molecular variability of sweet potato feathery mottle virus and other potyviruses infecting sweet potato in Peru.
Arch Virol. 2008;153(3):473-83. doi: 10.1007/s00705-007-0019-0. Epub 2008 Jan 3.
9
A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing.
Mol Plant Pathol. 2016 Sep;17(7):1111-23. doi: 10.1111/mpp.12366. Epub 2016 Apr 28.

引用本文的文献

1
-mediated susceptibility to plum pox virus: vascular expression in and functional validation through ortholog silencing in .
Front Plant Sci. 2025 Jun 25;16:1614211. doi: 10.3389/fpls.2025.1614211. eCollection 2025.
2
Natural self-attenuation of pathogenic viruses by deleting the silencing suppressor coding sequence for long-term plant-virus coexistence.
PLoS Pathog. 2025 Jun 26;21(6):e1013012. doi: 10.1371/journal.ppat.1013012. eCollection 2025 Jun.
3
Use of Bacterial Toxin-Antitoxin Systems as Biotechnological Tools in Plants.
Int J Mol Sci. 2024 Sep 27;25(19):10449. doi: 10.3390/ijms251910449.
5
Assembly of plant virus agroinfectious clones using biological material or DNA synthesis.
STAR Protoc. 2022 Dec 16;3(4):101716. doi: 10.1016/j.xpro.2022.101716. Epub 2022 Sep 22.
6
AlkB RNA demethylase homologues and N -methyladenosine are involved in Potyvirus infection.
Mol Plant Pathol. 2022 Oct;23(10):1555-1564. doi: 10.1111/mpp.13239. Epub 2022 Jun 14.
7
Proteome expansion in the Potyviridae evolutionary radiation.
FEMS Microbiol Rev. 2022 Jul 1;46(4). doi: 10.1093/femsre/fuac011.

本文引用的文献

2
Implications of mixed viral infections on plant disease ecology and evolution.
Adv Virus Res. 2020;106:145-169. doi: 10.1016/bs.aivir.2020.02.001. Epub 2020 Mar 13.
4
The Biological Impact of the Hypervariable N-Terminal Region of Potyviral Genomes.
Annu Rev Virol. 2019 Sep 29;6(1):255-274. doi: 10.1146/annurev-virology-092818-015843. Epub 2019 Jul 12.
5
Global Dimensions of Plant Virus Diseases: Current Status and Future Perspectives.
Annu Rev Virol. 2019 Sep 29;6(1):387-409. doi: 10.1146/annurev-virology-092818-015606. Epub 2019 Jul 5.
6
Sweetpotato Viruses: 15 Years of Progress on Understanding and Managing Complex Diseases.
Plant Dis. 2012 Feb;96(2):168-185. doi: 10.1094/PDIS-07-11-0550.
7
Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases.
Viruses. 2019 Jan 15;11(1):66. doi: 10.3390/v11010066.
9
Plant Viral Proteases: Beyond the Role of Peptide Cutters.
Front Plant Sci. 2018 May 17;9:666. doi: 10.3389/fpls.2018.00666. eCollection 2018.
10
Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.
Mol Plant Pathol. 2018 Jun;19(6):1504-1510. doi: 10.1111/mpp.12640. Epub 2018 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验