Suppr超能文献

在逆行信号转导中对基因调控的研究:基因组不偶联蛋白如何调节核基因表达以适应质体生物发生。

GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis.

机构信息

Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China.

Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.

出版信息

Plant Cell. 2021 May 5;33(3):457-474. doi: 10.1093/plcell/koaa048.

Abstract

Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form, the chloroplasts) are the primary energy-producing compartment of plant cells, and the site for the biosynthesis of many metabolites, including fatty acids, amino acids, nucleotides, isoprenoids, tetrapyrroles, vitamins, and phytohormone precursors. Signals derived from plastids regulate the accumulation of a large set of nucleus-encoded proteins, many of which localize to plastids. A set of mutants defective in retrograde signaling (genomes uncoupled, or gun) was isolated over 25 years ago. While most GUN genes act in tetrapyrrole biosynthesis, resolving the molecular function of GUN1, the proposed integrator of multiple retrograde signals, has turned out to be particularly challenging. Based on its amino acid sequence, GUN1 was initially predicted to be a plastid-localized nucleic acid-binding protein. Only recently, mechanistic information on the function of GUN1 has been obtained, pointing to a role in plastid protein homeostasis. This review article summarizes our current understanding of GUN-related retrograde signaling and provides a critical appraisal of the various proposed roles for GUNs and their respective pathways.

摘要

细胞区室之间的通讯对于发育和环境适应至关重要。细胞器发出的信号,即所谓的逆行信号,协调核基因表达与细胞器的发育阶段和/或功能状态。质体(以其绿色光合作用分化形式——叶绿体而闻名)是植物细胞的主要能量产生区室,也是许多代谢物(包括脂肪酸、氨基酸、核苷酸、类异戊二烯、四吡咯、维生素和植物激素前体)生物合成的场所。质体衍生的信号调节大量核编码蛋白的积累,其中许多蛋白定位于质体。二十多年前,人们分离出了一组在逆行信号(基因组解耦或 gun)中缺陷的突变体。虽然大多数 GUN 基因在四吡咯生物合成中起作用,但确定 GUN1 的分子功能(提出的多种逆行信号整合因子)特别具有挑战性。根据其氨基酸序列,GUN1 最初被预测为一种定位于质体的核酸结合蛋白。直到最近,才获得了关于 GUN1 功能的机制信息,表明其在质体蛋白稳态中发挥作用。本文总结了我们目前对 GUN 相关逆行信号的理解,并对 GUN 及其各自途径的各种拟议作用进行了批判性评估。

相似文献

3
Extensive Posttranscriptional Regulation of Nuclear Gene Expression by Plastid Retrograde Signals.
Plant Physiol. 2019 Aug;180(4):2034-2048. doi: 10.1104/pp.19.00421. Epub 2019 May 28.
4
Tetrapyrrole biosynthesis pathway regulates plastid-to-nucleus signaling by controlling plastid gene expression in plants.
Plant Commun. 2023 Jan 9;4(1):100411. doi: 10.1016/j.xplc.2022.100411. Epub 2022 Jul 14.
5
The retrograde signaling protein GUN1 regulates tetrapyrrole biosynthesis.
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24900-24906. doi: 10.1073/pnas.1911251116. Epub 2019 Nov 15.
6
GUN1 interacts with MORF2 to regulate plastid RNA editing during retrograde signaling.
Proc Natl Acad Sci U S A. 2019 May 14;116(20):10162-10167. doi: 10.1073/pnas.1820426116. Epub 2019 Apr 15.
7
Functional conservation of GENOMES UNCOUPLED1 in plastid-to-nucleus retrograde signaling in tomato.
Plant Sci. 2024 Jun;343:112053. doi: 10.1016/j.plantsci.2024.112053. Epub 2024 Feb 27.
8
The Role of Tetrapyrrole- and GUN1-Dependent Signaling on Chloroplast Biogenesis.
Plants (Basel). 2021 Jan 21;10(2):196. doi: 10.3390/plants10020196.
9
Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling.
Plant Physiol. 2009 Nov;151(3):1339-53. doi: 10.1104/pp.109.145987. Epub 2009 Sep 2.
10
Current understanding of GUN1: a key mediator involved in biogenic retrograde signaling.
Plant Cell Rep. 2019 Jul;38(7):819-823. doi: 10.1007/s00299-019-02383-4. Epub 2019 Jan 22.

引用本文的文献

4
Phosphorylation at serine-260 of Toc33 is essential for chloroplast biogenesis.
Sci Adv. 2025 Mar 28;11(13):eadu4054. doi: 10.1126/sciadv.adu4054. Epub 2025 Mar 26.
6
Characterization of a tomato chlh mis-sense mutant reveals a new function of ChlH in fruit ripening.
Plant Biotechnol J. 2025 Mar;23(3):911-926. doi: 10.1111/pbi.14548. Epub 2024 Dec 19.
7
Intra-chloroplast proteases: A holistic network view of chloroplast proteolysis.
Plant Cell. 2024 Sep 3;36(9):3116-3130. doi: 10.1093/plcell/koae178.
8
Structure, function, and assembly of PSI in thylakoid membranes of vascular plants.
Plant Cell. 2024 Oct 3;36(10):4080-4108. doi: 10.1093/plcell/koae169.
10
The uS10c-BPG2 module mediates ribosomal RNA processing in chloroplast nucleoids.
Nucleic Acids Res. 2024 Jul 22;52(13):7893-7909. doi: 10.1093/nar/gkae339.

本文引用的文献

1
CIA2 and CIA2-LIKE are required for optimal photosynthesis and stress responses in Arabidopsis thaliana.
Plant J. 2021 Feb;105(3):619-638. doi: 10.1111/tpj.15058. Epub 2020 Nov 27.
2
Nucleo-plastidic PAP8/pTAC6 couples chloroplast formation with photomorphogenesis.
EMBO J. 2020 Nov 16;39(22):e104941. doi: 10.15252/embj.2020104941. Epub 2020 Oct 1.
3
Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21796-21803. doi: 10.1073/pnas.2004405117. Epub 2020 Aug 19.
4
Multiple effects of antibiotics on chloroplast and nuclear gene expression.
Funct Plant Biol. 2003 Jan;30(11):1097-1103. doi: 10.1071/FP03149.
5
Retrograde Induction of phyB Orchestrates Ethylene-Auxin Hierarchy to Regulate Growth.
Plant Physiol. 2020 Jul;183(3):1268-1280. doi: 10.1104/pp.20.00090. Epub 2020 May 19.
6
7
Unraveling the Linkage between Retrograde Signaling and RNA Metabolism in Plants.
Trends Plant Sci. 2020 Feb;25(2):141-147. doi: 10.1016/j.tplants.2019.10.009. Epub 2019 Nov 30.
8
The retrograde signaling protein GUN1 regulates tetrapyrrole biosynthesis.
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24900-24906. doi: 10.1073/pnas.1911251116. Epub 2019 Nov 15.
10
GUN1-Interacting Proteins Open the Door for Retrograde Signaling.
Trends Plant Sci. 2019 Oct;24(10):884-887. doi: 10.1016/j.tplants.2019.07.005. Epub 2019 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验