文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

水平通道中可渗透介质内 MHD 挤压流 Jeffery 纳米流体的传热传质。

Heat and mass transfer on MHD squeezing flow of Jeffrey nanofluid in horizontal channel through permeable medium.

机构信息

Faculty of Science, Department of Mathematical Sciences, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.

出版信息

PLoS One. 2021 May 6;16(5):e0250402. doi: 10.1371/journal.pone.0250402. eCollection 2021.


DOI:10.1371/journal.pone.0250402
PMID:33956793
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8101772/
Abstract

The heat and mass transfer on time dependent hydrodynamic squeeze flow of Jeffrey nanofluid across two plates over permeable medium in the slip condition with heat generation/absorption, thermal radiation and chemical reaction are investigated. The impacts of Brownian motion and thermophoresis is examined in the Buongiorno's nanofluid model. Conversion of the governing partial differential equations to the ordinary differential equations is conducted via similarity transformation. The dimensionless equations are solved by imposing numerical method of Keller-box. The outputs are compared with previous reported works in the journals for the validation of the present outputs and found in proper agreement. The behavior of velocity, temperature, and nanoparticles concentration profiles by varying the pertinent parameters are examined. Findings portray that the acceleration of the velocity profile and the wall shear stress is due to the squeezing of plates. Furthermore, the velocity, temperature and concentration profile decline with boost in Hartmann number and ratio of relaxation to retardation times. It is discovered that the rate of heat transfer and temperature profile increase when viscous dissipation, thermophoresis and heat source/sink rises. In contrast, the increment of thermal radiation reduces the temperature and enhances the heat transfer rate. Besides, the mass transfer rate decelerates for increasing Brownian motion in nanofluid, while it elevates when chemical reaction and thermophoresis increases.

摘要

研究了热生成/吸收、热辐射和化学反应条件下,具有滑移条件的可渗透介质中两板间随时间变化的 Jeffrey 纳米流体的热质传递。在 Buongiorno 的纳米流体模型中检查了布朗运动和热泳的影响。通过相似变换将控制偏微分方程转换为常微分方程。通过 Keller-box 的数值方法求解无量纲方程。将输出结果与期刊中以前报道的工作进行比较,以验证本输出结果,并发现它们非常吻合。通过改变相关参数来检查速度、温度和纳米颗粒浓度分布的行为。研究结果表明,速度分布的加速和壁面剪切应力是由于板的挤压所致。此外,随着哈特曼数和松弛时间与延迟时间之比的增加,速度、温度和浓度分布会下降。发现当粘性耗散、热泳和热源/汇增加时,传热速率和温度分布增加。相反,热辐射的增加会降低温度并提高传热速率。此外,当化学反应和热泳增加时,纳米流体中布朗运动的增加会降低传质速率,而当热泳增加时,传质速率会增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/5ab6084c1a56/pone.0250402.g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/277f08bc530f/pone.0250402.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/373ddeaa1516/pone.0250402.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/39e9e765fded/pone.0250402.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/1fe5d65b743d/pone.0250402.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/5165a243a2b0/pone.0250402.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/76979385fae1/pone.0250402.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/72e4eb115977/pone.0250402.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/e914736f20bd/pone.0250402.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/445452c666d7/pone.0250402.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/c2b2652fe0f5/pone.0250402.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/9071c7799b34/pone.0250402.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/ffe245918e60/pone.0250402.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/9243d92564b7/pone.0250402.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/a086cb036bd7/pone.0250402.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/a54d66b37dcd/pone.0250402.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/4b3ea497e109/pone.0250402.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/d958808a8883/pone.0250402.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/6d65e7291c66/pone.0250402.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/7dea4df3e5ad/pone.0250402.g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/a930a396cece/pone.0250402.g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/2521945d4a05/pone.0250402.g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/80b92cb180e5/pone.0250402.g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/5d1f3905f802/pone.0250402.g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/e6404a5674f7/pone.0250402.g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/5ab6084c1a56/pone.0250402.g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/277f08bc530f/pone.0250402.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/373ddeaa1516/pone.0250402.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/39e9e765fded/pone.0250402.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/1fe5d65b743d/pone.0250402.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/5165a243a2b0/pone.0250402.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/76979385fae1/pone.0250402.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/72e4eb115977/pone.0250402.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/e914736f20bd/pone.0250402.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/445452c666d7/pone.0250402.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/c2b2652fe0f5/pone.0250402.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/9071c7799b34/pone.0250402.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/ffe245918e60/pone.0250402.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/9243d92564b7/pone.0250402.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/a086cb036bd7/pone.0250402.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/a54d66b37dcd/pone.0250402.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/4b3ea497e109/pone.0250402.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/d958808a8883/pone.0250402.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/6d65e7291c66/pone.0250402.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/7dea4df3e5ad/pone.0250402.g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/a930a396cece/pone.0250402.g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/2521945d4a05/pone.0250402.g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/80b92cb180e5/pone.0250402.g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/5d1f3905f802/pone.0250402.g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/e6404a5674f7/pone.0250402.g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e5/8101772/5ab6084c1a56/pone.0250402.g025.jpg

相似文献

[1]
Heat and mass transfer on MHD squeezing flow of Jeffrey nanofluid in horizontal channel through permeable medium.

PLoS One. 2021

[2]
Soret and Dufour effects on MHD squeezing flow of Jeffrey fluid in horizontal channel with thermal radiation.

PLoS One. 2022

[3]
Brownian Motion and Thermophoresis Effects on MHD Three Dimensional Nanofluid Flow with Slip Conditions and Joule Dissipation Due to Porous Rotating Disk.

Molecules. 2020-2-7

[4]
MHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effects.

PLoS One. 2014-11-12

[5]
Radiative hydromagnetic flow of jeffrey nanofluid by an exponentially stretching sheet.

PLoS One. 2014-8-1

[6]
Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk.

Comput Methods Programs Biomed. 2020-7

[7]
NUMERICAL study of MAGNETO convective Buongiorno nanofluid flow in a rectangular enclosure under oblique magnetic field with heat generation/absorption and complex wall conditions.

Heliyon. 2023-7-4

[8]
Flow and Heat Transfer to Sisko Nanofluid over a Nonlinear Stretching Sheet.

PLoS One. 2015-5-18

[9]
Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport.

Comput Methods Programs Biomed. 2020-4

[10]
Nonlinear radiation effect on MHD Carreau nanofluid flow over a radially stretching surface with zero mass flux at the surface.

Sci Rep. 2018-2-27

引用本文的文献

[1]
A theoretical analysis of the ternary hybrid nanofluid flows over a non-isothermal and non-isosolutal multiple geometries.

Heliyon. 2023-3-28

[2]
Soret and Dufour effects on MHD squeezing flow of Jeffrey fluid in horizontal channel with thermal radiation.

PLoS One. 2022

本文引用的文献

[1]
3D MHD nonlinear radiative flow of CuO-MgO/methanol hybrid nanofluid beyond an irregular dimension surface with slip effect.

Sci Rep. 2020-6-8

[2]
Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

PLoS One. 2016-10-24

[3]
Lorentz force in water: evidence that hydronium cyclotron resonance enhances polymorphism.

Electromagn Biol Med. 2015

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索